GRASS GIS

Source: Wikipedia, the free encyclopedia.
GRASS GIS
Developer(s)GRASS Development Team
Initial release1984
Stable release
8.3.2[1] / 7 March 2024; 3 months ago (7 March 2024)
Repository
Written in
Cross-platform
Available inEnglish, Czech, French, German, Italian, Japanese, Polish, Spanish, Vietnamese, ...
TypeGeographic information system
LicenseGNU General Public License
Websitegrass.osgeo.org

Geographic Resources Analysis Support System (commonly termed GRASS GIS) is a

image processing, and graphic data.[2]

GRASS GIS contains over 350 modules to render maps and images on monitor and paper; manipulate raster and vector data including vector networks; process multispectral image data; and create, manage, and store spatial data.

It is licensed and released as

OS X, Windows and Linux. Users can interface with the software features through a graphical user interface (GUI) or by plugging into GRASS via other software such as QGIS. They can also interface with the modules directly through a bespoke shell
that the application launches or by calling individual modules directly from a standard shell. The latest stable release version (LTS) is GRASS GIS 7, which is available since 2015.

The GRASS development team is a multinational group consisting of developers at many locations. GRASS is one of the eight initial software projects of the Open Source Geospatial Foundation.

Architecture

GRASS supports raster and vector data in two and three dimensions. The vector data model is

topological, meaning that areas are defined by boundaries and centroids; boundaries cannot overlap within one layer. In contrast, OpenGIS Simple Features
, defines vectors more freely, much as a non-georeferenced vector illustration program does.

GRASS is designed as an environment in which tools that perform specific GIS computations are executed. Unlike GUI-based application software, the GRASS user is presented with a Unix shell containing a modified environment that supports execution of GRASS commands, termed modules. The environment has a state that includes parameters such as the geographic region covered and the map projection in use. All GRASS modules read this state and additionally are given specific parameters (such as input and output maps, or values to use in a computation) when executed. Most GRASS modules and abilities can be operated via a graphical user interface (provided by a GRASS module), as an alternative to manipulating geographic data in a shell.

The GRASS distribution includes over 350 core modules. Over 100 add-on modules created by users are offered on its website. The libraries and core modules are written in C. Other modules are written in C, C++, Python, Unix shell, Tcl, or other scripting languages. The modules are designed under the Unix philosophy and hence can be combined using Python or shell scripting to build more complex or specialized modules, by users, without knowledge of C programming.

There is cooperation between the GRASS and Quantum GIS (QGIS) projects.[citation needed] Recent versions of QGIS can be executed within the GRASS environment, allowing QGIS to be used as a user-friendly graphical interface to GRASS that more closely resembles other graphical GIS software than does the shell-based GRASS interface.

Another project exists to re-implement GRASS in Java as JGRASS.

History

GRASS has been under continuous development since 1982

U.S. Army Corps of Engineers, in Champaign, Illinois
. USA-CERL completed its last release of GRASS as version 4.1 in 1992, and provided five updates and patches to this release through 1995. USA-CERL also wrote the core components of the GRASS 5.0 floating point version.

The development of GRASS was started by the USA-CERL to meet the need of the United States military for software for

public domain software GRASS software was changed to the GNU GPL in version 5.0.[4]

Since then, GRASS has evolved into a powerful software suite with a wide range of applications in many different areas of

companies.

As of 2015[update], the latest stable release version (LTS) is GRASS GIS 7. It was released in 2015, replacing the old stable branch (6.4) which was released in 2011. Version 7 added many new features, including large data support, a fast topological 2D/3D vector engine, powerful vector network analysis, a full temporal framework and many other features and improvements.[8]

As of 2015, GRASS development is split into two branches: stable and developmental.[9] The stable branch is recommended for most users, while the development branch operates as a testbed for new features.

See also

References

  1. ^ "Release 8.3.2". 7 March 2024. Retrieved 22 March 2024.
  2. .
  3. ^ Westervelt, J. (2004). GRASS roots (PDF). FOSS/GRASS Users Conference. Bangkok, Thailand. pp. 12–14.
  4. ^ GRASS Development Team. GRASS History Archived 2012-07-06 at the Wayback Machine. Retrieved on 2008-03-29.
  5. ^ Hofierka J., Šúri M. (2002). The solar radiation model for Open source GIS: implementation and applications. Proceedings of the Open source GIS - GRASS users conference, Italy. Available: [1] provides a detailed guide on how to run the module.
  6. ^ Šúri, Marcel, and Jaroslav Hofierka. "A New GIS‐based Solar Radiation Model and Its Application to Photovoltaic Assessments." Transactions in GIS 8.2 (2004): 175-190.
  7. ^ Version 7 new features
  8. ^ stable branch (7.0), and an experimental/development branch (7.1)

Further reading

External links