Geology of the Canary Islands

Source: Wikipedia, the free encyclopedia.

Map of the Canary Islands
Teide stratovolcano on Tenerife
Volcanic cones on Lanzarote
Pahoehoe
lava flow on El Hierro
Caldera de Taburiente on La Palma

The geology of the Canary Islands is dominated by

volcanic eruption on land occurred in 2021[2] and the most recent underwater eruption was in 2011-12.[1]

The Canary Islands are a 450 km (280 mi) long, east-west trending,

Northwest Africa.[3] The islands are located on the African tectonic plate. The Canary Islands are an example of intraplate volcanism because they are located far (more than 600 km (370 mi)) from the edges of the African Plate.[4]

From east to west, the main islands are Lanzarote, Fuerteventura, Gran Canaria, Tenerife, La Gomera, La Palma, and El Hierro.[Note 1] There are also several minor islands and islets. The seven main Canary Islands originated as separate submarine seamount volcanoes on the floor of the Atlantic Ocean, which is 1,000–4,000 m (3,000–13,000 ft) deep in the Canarian region.

Lanzarote and Fuerteventura are parts of a single volcanic ridge called the Canary Ridge. These two present-day islands have sometimes been a single island in the past. Part of the ridge is now submerged, and Lanzarote and Fuerteventura are separate islands, separated by an 11 km (7 mi) wide, 40 m (130 ft) deep strait of ocean water.[6]

Volcanic activity has occurred during the last 11,700 years on all of the main islands except La Gomera.[7]

Regional setting

Volcanic activity in the Canary Volcanic Province started about 70

Ma (million years ago), occurring at numerous seamounts and the Savage Islands, across an area of the ocean floor up to 400 km north of the Canary Islands. The northernmost of this group of seamounts, Lars seamount (about 380 km north of Lanzarote), has been dated to 68 Ma. The seamounts are progressively younger southwestwards towards Lanzarote.[8]

The Canary Islands are built upon one the oldest regions of Earth's oceanic crust (175–147 Ma), part of the slow-moving African Plate, in the continental rise section of northwest Africa's passive continental margin.[9][10] The oceanic lithosphere is about 60 km thick at the central Canary Islands and about 100 km thick at the western islands.[11]

Two seamounts, Las Hijas (southwest of El Hierro) and El Hijo de Tenerife (about 200,000 years old, located between Gran Canaria and Tenerife) may eventually (in the next 500,000 years) form new islands by future eruptions adding more lava flows to their

volcanic edifices.[12]

Growth stages

Volcanic oceanic islands, such as the Canary Islands, form in deep parts of the oceans. This type of island forms by a sequence of development stages:[13]

  1. submarine (seamount) stage
  2. shield-building stage
  3. declining stage (La Palma and El Hierro)
  4. erosion stage (La Gomera)
  5. rejuvenation/post-erosional stage (Fuerteventura, Lanzarote, Gran Canaria and Tenerife).[13]

The Canary Islands differ from some other volcanic oceanic islands, such as the Hawaiian Islands: for example, the Canary Islands have stratovolcanoes, compression structures and a lack of significant subsidence.[13]

The seven main Canary Islands originated as separate submarine seamount volcanoes on the floor of the Atlantic Ocean. Each seamount, built up by the eruption of many

lava flows, eventually became an island. Subaerial volcanic eruptions continued on each island. Late-stage fissure eruptions dominated on Lanzarote and Fuerteventura, resulting in relatively subdued topography with heights below 1,000 m (3,300 ft). The other islands are much more rugged and mountainous. In the case of Tenerife, the volcanic edifice of Teide rises about 7,500 m (24,600 ft) above the ocean floor (about 3,780 m (12,400 ft) underwater and 3,715 m (12,188 ft) above sea level).[14][15]

The volume of volcanic rock that has built up the Canary Islands to thousands of metres above the ocean floor is about 124,600 km3; 96% of this lava is hidden below sea level and only 4% (4,940 km3) is above sea level.[16] The western islands have more of their volume (7%) above sea level than do the eastern islands (2%).[16]

Age

The age of the oldest subaerially-erupted lavas on each island decreases from east to west along the island chain: Lanzarote-Fuerteventura (20.2 

Ma), Gran Canaria (14.6 Ma), Tenerife (11.9 Ma), La Gomera (9.4 Ma), La Palma (1.7 Ma) and El Hierro (1.1 Ma).[17][4]

Rock types

Volcanic rock types found on the Canary Islands are typical of oceanic islands. The volcanic rocks include alkali basalts, basanites, phonolites, trachytes, nephelinites, trachyandesites, tephrites and rhyolites.[13][7]

plutonic rocks (for example, syenites, gabbros and pyroxenites) that formed deep below the surface occur on Fuerteventura,[18] La Gomera and La Palma. Apart from some islands of Cape Verde (another volcanic island group in the Atlantic Ocean, about 1,400 km (900 mi) south-west of the Canary Islands), Fuerteventura is the only oceanic island known to have outcrops of carbonatite.[19]

Volcanic landforms

"Los Órganos", columnar-jointed phonolite on La Gomera

Examples of the following types of volcanic

tuff ring, maar, lava flow, lava flow field, dyke, volcanic plug.[20]

Origins of volcanism

Several hypotheses have been proposed to explain the volcanism of the Canary Islands.[21] Two hypotheses have received the most attention from geologists:

  1. The volcanism is related to crustal fractures extending from the Atlas Mountains of Morocco.
  2. The volcanism is caused by the African Plate moving slowly over a hotspot in the Earth's mantle.

Currently, a hotspot (the Canary hotspot) is the explanation accepted by most geologists who study the Canary Islands.[22][23]

Evidence in favour of a hotspot origin for Canarian volcanism includes the age progression in the arcuate Canary Volcanic Province occurring in the same direction and at the same rate as in the neighbouring arcuate Madeira Volcanic Province (about 450 km farther north). This is consistent with the African Plate rotating anticlockwise at about 12 mm per year.[24] Also, seismic tomography has revealed the existence of a region of hot rock extending from the surface, down through the oceanic lithosphere to a depth of at least 1,000 km in the upper mantle.[25]

Volcanic eruption distribution

Seventy-five confirmed volcanic eruptions have occurred in the Canary Islands in the

Modern Era of European history (that is, after c.1480).[26] Therefore, in the last 500 years, volcanic eruptions have occurred, on average, every 30 to 35 years.[27] However, in the Modern Era, the repose period between infrequent eruptions at each volcano has been highly variable (26 to 237 years for Cumbre Vieja on La Palma; 1 to 212 years for Tenerife), making reliable prediction of future eruptions unlikely.[28][26]

Volcanic eruptions in the Canary Islands
Island Holocene
(last 11,700 years)
Modern Era
(since c. 1480)
Modern Era eruption dates Notes Ref.
Lanzarote 4 2 1730–1736, 1824 [29]
Fuerteventura 0 0 —— No specific confirmed Holocene eruptions, but they are inferred to have occurred (based on the freshness of lava and volcanic landforms) [30]
Gran Canaria 11 0 —— [31]
Tenerife 42 5 1492, 1704–1705, 1706, 1798, 1909 [32]
La Gomera 0 0 —— [27]
La Palma 14 8 1481(±11), 1585, 1646, 1677–1678, 1712, 1949, 1971, 2021 [33]
El Hierro 4 1 2011–2012 [34]

Lanzarote

Remains of the Famara shield volcano's pile of lava flows at the northern tip of Lanzarote

Volcanic activity at Lanzarote started during the

calcrete,[42] the eroded remains of the two shield volcanoes are preserved in southern and northern Lanzarote respectively, with small outcrops of the central edifice occurring between them. At about 2.7 Ma, in the late Pliocene Epoch, the rejuvenation stage began. It produced much less lava than the earlier shield stage, mainly at the Montaña Roja and Montaña Bermeja volcanoes in southern Lanzarote.[41] Then, throughout the subsequent Pleistocene and Holocene epochs, the rejuvenation volcanism has continued and has been dominated by strombolian-style eruptions of lava from sets of volcanic cones aligned along numerous NE-SW fissures in the central part of Lanzarote.[43] Geologically recent examples of rejuvenation stage volcanism include eruptions at Montaña Corona (about 21,000 years ago), Timanfaya (1730-1736) and Tao/Nuevo del Fuego/Tinguatón (1824).[44][45][46]

Timanfaya, Lanzarote

The Timanfaya eruption (1730–1736) erupted more than one

historical times.[47][48][49][50][51]

Almost all the volcanic rocks of Lanzarote are basaltic.[52]

Fuerteventura

Basal complex near Ajuy, Fuerteventura

Fuerteventura is situated on Mesozoic oceanic crust, about 70 km from the edge of the African continental shelf and about 100 km from the African mainland, making it the Canarian island closest to Africa.

Due to its old age, the oceanic crust at Fuerteventura is relatively rigid and this has prevented subsidence and allowed weathering and erosion to expose deep levels of the island's geological structure.[53]

The two main rock sequences of Fuerteventura are (1) a lower, older (Cretaceous to early Miocene) sequence of sedimentary, plutonic and submarine volcanic rocks with intrusive dykes, often called the "basal complex", which is unconformably overlain by (2) a younger sequence of Miocene, Pliocene and Quaternary subaerial volcanic rocks.

The oldest rocks of Fuerteventura are a set of

metamorphosed, and they are steeply tilted. The tilting occurred in the mid-Cretaceous and was probably caused by the uplift of Africa.[55][56] The igneous rocks of the basal complex probably represent the seamount stage of Fuerteventura’s volcanic history, exposed due to uplift and erosion.[57]

In the early Miocene, volcanic activity transitioned from submarine to subaerial while the volcanic edifice was gradually built up above sea level. Fuerteventura has the oldest subaerial volcanic rocks of the Canary Islands, which have been dated to 20.6 Ma.[58] There were three main shield volcanoes built on the seamount base (from north to south): the Northern Edifice, the Central Edifice and the Jandia Edifice.[59][60] The central shield volcano is the oldest, built mostly from 22 to 18 Ma but with a later phase from 17.5 to 13 Ma. The southern shield volcano formed from 21 to 14 Ma. The northern shield volcano was built mainly from 17 to 12 Ma.[61] These shield volcanoes erupted mostly basaltic and trachybasaltic lava flows.[62]

In the late Miocene (from about 11.5 Ma), there was a pause in volcanic activity (the erosional stage). Minor volcanic eruptions resumed in the Pliocene, at about 5.1 Ma (the rejuvenation stage) and they continued sporadically into the Quaternary, with basaltic lava flows dominating again.[63]

The most recent volcanic eruption on Fuerteventura that has been dated occurred 134,000 years ago in the middle Pleistocene.[64] Some undated volcanic cones in northern Fuerteventura may have formed more recently.[65]

Weathering, erosion and sedimentation during the Pliocene and Quaternary formed coastal and shallow-sea sedimentary rocks that were eventually covered by younger

palaeosols.[66]

Gran Canaria

After early Miocene submarine volcanic eruptions created a seamount, subaerial volcanic activity at Gran Canaria occurred in three phases: shield stage (middle- and late-Miocene, 14.5 to 8.5 Ma), erosional stage (late Miocene, 8.5 to 5.3 Ma) and rejuvenated stage (Pliocene to Quaternary, 5.3 Ma to present).[67]

The shield stage started with an early phase of eruptions of basaltic lava flows, from 14.5 to 14.1 Ma, which built the main subaerial shield volcanic edifice that forms three quarters of the subaerial volume of Gran Canaria.[68] At least three shield volcanoes were active during this stage of island development and their lava flows gradually merged together into a single large landform.[69] This was followed by a later phase, from 14.1 to 8.5 Ma, of explosive volcanic eruptions of differentiated felsic lavas (phonolites, trachytes and rhyolites) with many pyroclastic flows (that deposited ignimbrites). In central Gran Canaria, Tejeda caldera and a cone sheet swarm were formed in this phase.[70]

Remains of Roque Nublo stratovolcano, Gran Canaria

From 8.5 to 5.3 Ma, in the erosional stage, there was minimal volcanic activity. Erosion occurred along with deposition of alluvial sediments on the island and deposition of submarine turbidite sediments offshore.[71]

In the rejuvenation stage, from 5.3 Ma to present, volcanic activity has occurred in three phases. The first phase, from 5.3 to 2.7 Ma, was dominated by the formation of

phreatomagmatic and strombolian eruptions of very alkaline lavas.[74] The most recent volcanic eruption on Gran Canaria occurred about 2,000 years ago at Bandama crater, in the northeast part of the island.[75][76]

Maspalomas sand dunes

urbanisation has affected the local winds and this has caused the gradual reduction in volume and area of the dune field because sediment erosion now exceeds sediment deposition.[80] The dunes had long been thought to have formed during the last several thousand years[81] but a 2021 study found evidence supporting a hypothesis that the dunes formed less than 300 years ago, as a consequence of a tsunami generated by the 1755 Lisbon earthquake.[82][83]

Earthquakes

The

Modified Mercalli Scale (an earthquake intensity scale ranging from I for "not felt" to XII for "extreme"), most earthquakes in the region have had an intensity of VI or less. The Timanfaya eruptions on Lanzarote in 1730, however, were accompanied by earthquakes with intensities of up to X on the same scale.[84]

From 1 January 1975 to 31 December 2023, 168 earthquakes of

epicentres on or close to the Canary Islands, were recorded; the largest of these earthquakes had a moment magnitude of 5.4 and an intensity of VII with its epicentre on the ocean floor about 28 km west of El Hierro in 2013.[85]

In 2004, an earthquake swarm occurred on Tenerife, which raised concern that a volcanic eruption may have been about to occur but no such eruption followed the swarm.[86][87]

Earthquake swarms, due to the underground movement of molten magma, were detected before and during the volcanic eruptions of 2011–2012 and 2021. In the week before the 2021 eruption on La Palma, a swarm of more than 22,000 earthquakes occurred, with mbLg magnitudes up to about 3.5. The hypocentres of successive earthquakes migrated upwards as magma rose slowly to the surface.[88][89][90] During the eruption, larger earthquakes were detected, for example an earthquake of mbLg magnitude 4.3 occurred 35 km below the surface.[91]

At least four tsunamis, triggered by distant earthquakes, have hit the coasts of the Canary Islands in the Modern Era. They occurred in 1755 (1755 Lisbon earthquake), 1761 (1761 Lisbon earthquake), 1941 (1941 Gloria Fault earthquake) and 1969.[92]

See also

Further reading

  • Carracedo, Juan Carlos; Day, Simon (1 January 2002). The Canary Islands (Classic Geology in Europe). Terra Books. .

Notes

References

  1. ^
  2. ^ "Lava shoots up from volcano on La Palma in Spanish Canary Islands". Reuters. 2021-09-19. Retrieved 2021-09-19.
  3. ^ Schmincke, H.U. and Sumita, M. (1998) Volcanic Evolution of Gran Canaria reconstructed from Apron Sediments: Synthesis of VICAP Project Drilling in Weaver, P.P.E., Schmincke, H.U., Firth, J.V., and Duffield, W. (editors) (1998) Proceedings of the Ocean Drilling Program, Scientific Results, volume 157
  4. ^
    S2CID 226588940
    , retrieved 2021-03-16
  5. ^ "El Senado reconoce a La Graciosa como la octava isla canaria habitada". El País (in Spanish). 26 June 2018. Retrieved 4 December 2019.
  6. , page 532
  7. ^ , page 101
  8. , page 9
  9. ^ Lang, N.P., Lang, K.T., Camodeca, B.M. (2012) "A geology-focused virtual field trip to Tenerife, Spain", Geological Society of America Special Paper 492, pages 323-334, doi: 10.1130/2012.2492(23)
  10. ^ Vera, J.A. (editor) (2004) "Geologia de Espana", Madrid, SGE-IGME (in Spanish) page 637
  11. ^ Schmincke, H.U. and Sumita, M. (1998) "Volcanic Evolution of Gran Canaria reconstructed from Apron Sediments: Synthesis of VICAP Project Drilling" in Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (editors) (1998) "Proceedings of the Ocean Drilling Program, Scientific Results", volume 157.
  12. , pages 9-11
  13. ^ a b c d Viñuela, J.M. (2007). "The Canary Islands Hot Spot" (PDF). www.mantleplumes.org. Archived (PDF) from the original on 18 August 2019. Retrieved 30 November 2019.
  14. ^ Hoernle, K. and Carracedo, J.C. Canary Islands, Geology in Gillespie, R. and Clague, D. (editors) (2009) Encyclopedia of Islands, page 134
  15. , page 680
  16. ^ a b Paris, R. (2002) "Rythmes de noconstruction et de destruction des édifices volcaniques de point chaud : I'exemple des lIes Canaries (Espagne)", Université Paris 1 Panthéon Sorbonne - Universidad de Las Palmas - Laboratoire de Géographie Physique CNRS, Doctoral Thesis, page 15, table 1 (in French)
  17. , Page 24
  18. ^ Hoernle, K. and Carracedo, J.C. Canary Islands, Geology in Gillespie, R. and Clague, D. (editors) (2009) Encyclopedia of Islands, page 140
  19. .
  20. , page 100
  21. .
  22. ^ Yepes, J.A. (2007). "The Canary Islands Topobathymetric Relief Map - Aspect Of The Sea Bed And Geology" (PDF). Spanish Institute of Oceanography (IEO). Retrieved 25 July 2018.
  23. S2CID 128390629
    .
  24. ^ Hoernle, K. and Carracedo, J-C. "Canary Islands, Geology" in Gillespie, R. and Clague, D. (editors) (2009) "Encyclopedia of Islands", page 142
  25. , pages 15-16
  26. ^ a b c Spain Volcanoes – Smithsonian Institution Global Volcanism Program, retrieved 26 November 2023; https://volcano.si.edu/volcanolist_countries.cfm?country=Spain
  27. ^ , page 101
  28. ^ Hoernle, K. and Carracedo, J.C. "Canary Islands, Geology" in Gillespie, R. and Clague, D. (editors) (2009) "Encyclopedia of Islands", page 135
  29. ^ Lanzarote - Eruption history ; Smithsonian Institution Global Volcanism Program, retrieved 08 Nov 2023; https://volcano.si.edu/volcano.cfm?vn=383060
  30. ^ Fuerteventura - Eruption history ; Smithsonian Institution Global Volcanism Program, retrieved 08 Nov 2023; https://volcano.si.edu/volcano.cfm?vn=383050
  31. ^ Gran Canaria - Eruption history ; Smithsonian Institution Global Volcanism Program, retrieved 08 Nov 2023; https://volcano.si.edu/volcano.cfm?vn=383040
  32. ^ Tenerife - Eruption history ; Smithsonian Institution Global Volcanism Program, retrieved 08 Nov 2023; https://volcano.si.edu/volcano.cfm?vn=383030
  33. ^ La Palma - Eruption history ; Smithsonian Institution Global Volcanism Program, retrieved 08 Nov 2023; https://volcano.si.edu/volcano.cfm?vn=383010
  34. ^ Hierro - Eruption history ; Smithsonian Institution Global Volcanism Program, retrieved 08 Nov 2023; https://volcano.si.edu/volcano.cfm?vn=383020
  35. ^ Hansen Machin, A. and Perez Torrado, F. (2005) "The Island and it's Territory: Volcanism in Lanzarote", Sixth International Conference on Geomorphology, Field Trip Guide C-1, page 6
  36. ^ Becerril, L. et al. (2017) "Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands)", Nat. Hazards Earth Syst. Sci., volume 17, pages 1145–1157, doi=10.5194/nhess-17-1145-2017
  37. ^ Coello et al. (1992) "Evolution of the eastern volcanic ridge of the Canary Islands based on new K-Ar data", Journal of Volcanology and Geothermal Research, volume 53, pages 251-274
  38. ^ Hansen Machin, A. and Perez Torrado, F. (2005) "The Island and it's Territory: Volcanism in Lanzarote", Sixth International Conference on Geomorphology, Field Trip Guide C-1, page 7
  39. ^ Instituto Geológico y Minero de España (IGME) Cartográfica de Canarias (GRAFCAN) (2015) "Descripción de las Unidades Geológicas de Lanzarote" for "Mapa Geológico de Canarias", Instituto Geológico y Minero de España; Madrid, Spain: 2015. Gobierno de Canarias, CARTOGRAF, FEDER, Programa MAC 2007–2013, 1992–1994, page 2
  40. ^ Hansen Machin, A. and Perez Torrado, F. (2005) "The Island and it's Territory: Volcanism in Lanzarote", Sixth International Conference on Geomorphology, Field Trip Guide C-1, page 8
  41. ^ a b Instituto Geológico y Minero de España (IGME) Cartográfica de Canarias (GRAFCAN) (2015) "Descripción de las Unidades Geológicas de Lanzarote" for "Mapa Geológico de Canarias", Instituto Geológico y Minero de España; Madrid, Spain: 2015. Gobierno de Canarias, CARTOGRAF, FEDER, Programa MAC 2007–2013, 1992–1994, page 3
  42. , page 58
  43. ^ Instituto Geológico y Minero de España (IGME) Cartográfica de Canarias (GRAFCAN) (2015) "Descripción de las Unidades Geológicas de Lanzarote" for "Mapa Geológico de Canarias", Instituto Geológico y Minero de España; Madrid, Spain: 2015. Gobierno de Canarias, CARTOGRAF, FEDER, Programa MAC 2007–2013, 1992–1994, pages 3 and 4
  44. , pages 1–11, 57
  45. ^ Hoernle, K. and Carracedo, J-C. “Canary Islands, Geology” in Gillespie, R. and Clague, D. (editors) (2009) “Encyclopedia of Islands”, page 140
  46. ^ Lanzarote and Chinijo Archipelago Geopark http://www.geoparquelanzarote.org/geologia/
  47. , page 486
  48. ^ Hoernle, K. and Carracedo, J-C. "Canary Islands, Geology" in Gillespie, R. and Clague, D. (editors) (2009) "Encyclopedia of Islands", page 140
  49. , page 463
  50. ^ Schmincke, H.U. and Sumita, M. (1998) "Volcanic Evolution of Gran Canaria reconstructed from Apron Sediments: Synthesis of VICAP Project Drilling" in Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (editors) (1998) "Proceedings of the Ocean Drilling Program, Scientific Results", volume 157
  51. ^ Padilla, G. et al. (2010) "Diffuse CO2 Emission from Timanfaya Volcano, Lanzarote, Canary Islands, Spain", Cities on Volcanoes - Conference 6 - Abstracts
  52. , pages 170 and 174
  53. , page 19
  54. , page 532
  55. , pages 24–25
  56. , page 533–534
  57. , page 533
  58. ^ Hoernle, K. A. and Tilton, G. R. (1991) "Sr-Nd-Pb isotope data for Fuerteventura (Canary Islands) basal complex and subaerial volcanics: applications to magma genesis and evolution", Schweiz. Mineral. Petrogr. Mitt., volume 71, pages 3–18
  59. ^ Ancochea, E. "Canary Islands: Evolution of volcanic activity" in Vera, J.A. (editor) (2004) "Geología de España", Madrid, SGE-IGME (in Spanish), pages 637–642
  60. ^ Hoernle, K. and Carracedo, J.C. Canary Islands, Geology in Gillespie, R. and Clague, D. (editors) (2009) Encyclopedia of Islands, page 140
  61. ^ Balogh, K.; Ahijado, A.; Casillas, R.; Fernandez, C. (1999) "Contributions to the chronology of the Basal Complex of Fuerteventura, Canary Islands", Journal of Volcanology and Geothermal Research, volume 90, pages 81–101
  62. ^ Hoernle, K. and Carracedo, J.C. Canary Islands, Geology in Gillespie, R. and Clague, D. (editors) (2009) Encyclopedia of Islands, page 140
  63. , page 442
  64. ^ Hoernle, K. and Carracedo, J.C. Canary Islands, Geology in Gillespie, R. and Clague, D. (editors) (2009) Encyclopedia of Islands, page 140
  65. ^ Hoernle, K. and Carracedo, J.C. Canary Islands, Geology in Gillespie, R. and Clague, D. (editors) (2009) Encyclopedia of Islands, page 140
  66. , page 444
  67. ^ Schneider, J-L. et al. (2004) "Sedimentary signatures of the entrance of coarse-grained volcaniclastic flows into the sea: the example of the breccia units of the Las Palmas Detritic Formation (Mio–Pliocene, Gran Canaria, Eastern Atlantic, Spain)", Journal of Volcanology and Geothermal Research, volume 138, pages 295–323
  68. ^ Schneider, J-L. et al. (2004) "Sedimentary signatures of the entrance of coarse-grained volcaniclastic flows into the sea: the example of the breccia units of the Las Palmas Detritic Formation (Mio–Pliocene, Gran Canaria, Eastern Atlantic, Spain)", Journal of Volcanology and Geothermal Research, volume 138, pages 295–323
  69. , page 90.
  70. ^ Schneider, J-L. et al. (2004) "Sedimentary signatures of the entrance of coarse-grained volcaniclastic flows into the sea: the example of the breccia units of the Las Palmas Detritic Formation (Mio–Pliocene, Gran Canaria, Eastern Atlantic, Spain)", Journal of Volcanology and Geothermal Research, volume 138, pages 295–323
  71. ^ Schneider, J-L. et al. (2004) "Sedimentary signatures of the entrance of coarse-grained volcaniclastic flows into the sea: the example of the breccia units of the Las Palmas Detritic Formation (Mio–Pliocene, Gran Canaria, Eastern Atlantic, Spain)", Journal of Volcanology and Geothermal Research, volume 138, pages 295–323
  72. ^ Schneider, J-L. et al. (2004) "Sedimentary signatures of the entrance of coarse-grained volcaniclastic flows into the sea: the example of the breccia units of the Las Palmas Detritic Formation (Mio–Pliocene, Gran Canaria, Eastern Atlantic, Spain)", Journal of Volcanology and Geothermal Research, volume 138, pages 295–323
  73. ^ Schneider, J-L. et al. (2004) "Sedimentary signatures of the entrance of coarse-grained volcaniclastic flows into the sea: the example of the breccia units of the Las Palmas Detritic Formation (Mio–Pliocene, Gran Canaria, Eastern Atlantic, Spain)", Journal of Volcanology and Geothermal Research, volume 138, pages 295–323
  74. ^ Schneider, J-L. et al. (2004) "Sedimentary signatures of the entrance of coarse-grained volcaniclastic flows into the sea: the example of the breccia units of the Las Palmas Detritic Formation (Mio–Pliocene, Gran Canaria, Eastern Atlantic, Spain)", Journal of Volcanology and Geothermal Research, volume 138, pages 295–323
  75. ^ Hoernle, K. and Carracedo, J.C. Canary Islands, Geology in Gillespie, R. and Clague, D. (editors) (2009) Encyclopedia of Islands, pages 139–140
  76. ^ Gran Canaria - Eruption history ; Smithsonian Institution Global Volcanism Program, retrieved 08 Nov 2023; https://volcano.si.edu/volcano.cfm?vn=383040
  77. ^ Fontán-Bouzas, Á. et al. (2019) "Multiannual Shore Morphodynamics of a Cuspate Foreland: Maspalomas (Gran Canaria, Canary Islands)", J. Mar. Sci. Eng., volume 7, issue 11, page 416, doi=10.3390/jmse7110416
  78. ^ IGME Carta geologica, (1989 map and 1990 memoir) Magna 50k (2nd Series), 1:25000, Sheet 1114-III (Maspalomas) http://info.igme.es/cartografiadigital/datos/magna50/pdfs/d11_G50/Magna50_11143.pdf and http://info.igme.es/cartografiadigital/datos/magna50/memorias/MMagna1114III.pdf pages 51 and 52
  79. ^ Dunas cuaternarias de Maspalomas (in Spanish), Inventario Español de Lugares de Interés Geológico, IGME, https://info.igme.es/ielig/LIGInfo.aspx?codigo=IC3012 , retrieved 15 February 2024
  80. ^ Smith, A.B.; Jackson, D.W.T.; Cooper, J.A.G.; Hernández-Calvento, L. (2017) "Quantifying the Role of Urbanization on Airflow Perturbations and Dunefield Evolution", Earth's Future, volume 5, issue 5, doi=10.1002/2016EF000524
  81. ^ IGME Carta geologica, (1989 map and 1990 memoir) Magna 50k (2nd Series), 1:25000, Sheet 1114-III (Maspalomas) http://info.igme.es/cartografiadigital/datos/magna50/pdfs/d11_G50/Magna50_11143.pdf and http://info.igme.es/cartografiadigital/datos/magna50/memorias/MMagna1114III.pdf
  82. ^ "Environmental restoration of the Maspalomas dune system (MASDUNAS Project)" Plataforma sobre Adaptación al Cambio Climático en España https://adaptecca.es/en/casos-practicos/environmental-restoration-maspalomas-dune-system-masdunas-project#:~:text=There%20is%20no%20mention%20of,and%20the%20ecosystem%20of%20La ; retrieved 7 March 2024)
  83. ^ La Provincia - Diario de Las Palmas (12 October 2021) "Un tsunami, en el origen de las dunas de Maspalomas", https://www.laprovincia.es/gran-canaria/2021/10/12/tsunami-origen-dunas-maspalomas-58318280.html ; retrieved 7 March 2024
  84. .
  85. ^ Earthquakes of the Canary Islands 1975–2023 – USGS Earthquake Catalog retrieved on 3 February 2024.
  86. ^ Domínguez Cerdeña, I.; del Fresno, C.; Rivera, L. (2011) "New insight on the increasing seismicity during Tenerife's 2004 volcanic reactivation", Journal of Volcanology and Geothermal Research, volume 206, issues 1-2, pages 15-29, doi=10.1016/j.jvolgeores.2011.06.005
  87. ^ Carracedo, J.C.; Troll, V.R.; Zaczek, K.; Rodríguez-González, A.; Soler, V.; Deegan, F.M. (2015) "The 2011–2012 submarine eruption off El Hierro, Canary Islands: New lessons in oceanic island growth and volcanic crisis management", Earth-Science Reviews, volume 150, pages 168–200, DOI=10.1016/j.earscirev.2015.06.007
  88. ^ Suarez, Borja (2021-09-19). "Lava shoots up from volcano on La Palma in Spain's Canary Islands". Reuters. Archived from the original on 22 September 2021. Retrieved 19 September 2021.
  89. ^ "La Palma Update: The intensity of earthquakes has increased". Canarian Weekly. 19 September 2021. Archived from the original on 23 September 2021. Retrieved 20 September 2021.
  90. ^ "Noticias e informe mensual de vigilancia volcánica" (in Spanish). Instituto Geográfico Nacional. 2 October 2021.
  91. ^ "La Palma registra un terremoto de 4,3: el más intenso desde el inicio de la actividad volcánica". rtve.es (in Spanish). 7 October 2021. Retrieved 11 October 2021.
  92. .

External links