Janko group J1

Source: Wikipedia, the free encyclopedia.

In the area of modern algebra known as

sporadic simple group of order

   23 ···· 11 · 19 = 175560
≈ 2×105.

History

J1 is one of the 26 sporadic groups and was originally described by Zvonimir Janko in 1965. It is the only Janko group whose existence was proved by Janko himself and was the first sporadic group to be found since the discovery of the Mathieu groups in the 19th century. Its discovery launched the modern theory of sporadic groups.

In 1986 Robert A. Wilson showed that J1 cannot be a subgroup of the monster group.[1] Thus it is one of the 6 sporadic groups called the pariahs.

Properties

The smallest faithful complex representation of J1 has dimension 56.

centralizer is isomorphic to the direct product of the group of order two and the alternating group A5 of order 60, which is to say, the rotational icosahedral group
. That was Janko's original conception of the group. In fact Janko and Thompson were investigating groups similar to the Ree groups 2G2(32n+1), and showed that if a simple group G has abelian Sylow 2-subgroups and a centralizer of an involution of the form Z/2Z×PSL2(q) for q a prime power at least 3, then either q is a power of 3 and G has the same order as a Ree group (it was later shown that G must be a Ree group in this case) or q is 4 or 5. Note that PSL2(4)=PSL2(5)=A5. This last exceptional case led to the Janko group J1.

J1 has no outer automorphisms and its Schur multiplier is trivial.

J1 is contained in the O'Nan group as the subgroup of elements fixed by an outer automorphism of order 2.

Constructions

Modulo 11 representation

Janko found a

modular representation in terms of 7 × 7 orthogonal matrices in the field of eleven elements
, with generators given by

and

Y has order 7 and Z has order 5. Janko (1966) credited W. A. Coppel for recognizing this representation as an embedding into Dickson's simple group G2(11) (which has a 7-dimensional representation over the field with 11 elements).

Permutation representation

J1 is the automorphism group of the Livingstone graph, a distance-transitive graph with 266 vertices and 1463 edges. The stabilizer of a vertex is PSL2(11), and the stabilizer of an edge is 2×A5.

This permutation representation can be constructed implicitly by starting with the subgroup PSL2(11) and adjoining 11 involutions t0,...,tX. PSL2(11) permutes these involutions under the exceptional 11-point representation, so they may be identified with points in the Payley biplane. The following relations (combined) are sufficient to define J1:[3]

  • Given points i and j, there are 2 lines containing both i and j, and 3 points lie on neither of these lines: the product titjtitjti is the unique involution in PSL2(11) that fixes those 3 points.
  • Given points i, j, and k that do not lie in a common line, the product titjtktitj is the unique element of order 6 in PSL2(11) that sends i to j, j to k, k back to i, so (titjtktitj)3 is the unique involution that fixes these 3 points.

Presentation

There is also a pair of generators a, b such that

a2=b3=(ab)7=(abab−1)10=1

J1 is thus a

Hurwitz group, a finite homomorphic image of the (2,3,7) triangle group
.

Maximal subgroups

Janko (1966) found the 7 conjugacy classes of maximal subgroups of J1 shown in the table. Maximal simple subgroups of order 660 afford J1 a permutation representation of degree 266. He found that there are 2 conjugacy classes of subgroups isomorphic to the alternating group A5, both found in the simple subgroups of order 660. J1 has non-abelian simple proper subgroups of only 2 isomorphism types.

Structure Order Index Description
PSL2(11) 660 266 Fixes point in smallest permutation representation
23.7.3 168 1045 Normalizer of Sylow 2-subgroup
2×A5 120 1463 Centralizer of involution
19.6 114 1540 Normalizer of Sylow 19-subgroup
11.10 110 1596 Normalizer of Sylow 11-subgroup
D6×D10 60 2926 Normalizer of Sylow 3-subgroup and Sylow 5-subgroup
7.6 42 4180 Normalizer of Sylow 7-subgroup

The notation A.B means a group with a normal subgroup A with quotient B, and D2n is the dihedral group of order 2n.

Number of elements of each order

The greatest order of any element of the group is 19. The conjugacy class orders and sizes are found in the ATLAS.

Order No. elements Conjugacy
1 = 1 1 = 1 1 class
2 = 2 1463 = 7 · 11 · 19 1 class
3 = 3 5852 = 22 · 7 · 11 · 19 1 class
5 = 5 11704 = 23 · 7 · 11 · 19 2 classes, power equivalent
6 = 2 · 3 29260 = 22 · 5 · 7 · 11 · 19 1 class
7 = 7 25080 = 23 · 3 · 5 · 11 · 19 1 class
10 = 2 · 5 35112 = 23 · 3 · 7 · 11 · 19 2 classes, power equivalent
11 = 11 15960 = 23 · 3 · 5 · 7 · 19 1 class
15 = 3 · 5 23408 = 24 · 7 · 11 · 19 2 classes, power equivalent
19 = 19 27720 = 23 · 32 · 5 · 7 · 11 3 classes, power equivalent

References

  1. .
  2. ^ Jansen (2005), p.123
  3. ISSN 0024-6107

External links