Logarithmically concave function

Source: Wikipedia, the free encyclopedia.

In

non-negative function f : RnR+ is logarithmically concave (or log-concave for short) if its domain is a convex set
, and if it satisfies the inequality

for all x,y ∈ dom f and 0 < θ < 1. If f is strictly positive, this is equivalent to saying that the logarithm of the function, log ∘ f, is concave; that is,

for all x,y ∈ dom f and 0 < θ < 1.

Examples of log-concave functions are the 0-1 indicator functions of convex sets (which requires the more flexible definition), and the Gaussian function.

Similarly, a function is

log-convex
if it satisfies the reverse inequality

for all x,y ∈ dom f and 0 < θ < 1.

Properties

  • From above two points, concavity log-concavity
    quasiconcavity
    .
  • A twice differentiable, nonnegative function with a convex domain is log-concave if and only if for all x satisfying f(x) > 0,
,[1]
i.e.
is
negative semi-definite
. For functions of one variable, this condition simplifies to

Operations preserving log-concavity

  • Products: The product of log-concave functions is also log-concave. Indeed, if f and g are log-concave functions, then log f and log g are concave by definition. Therefore
is concave, and hence also f g is log-concave.
  • Marginals: if f(x,y) : Rn+m → R is log-concave, then
is log-concave (see Prékopa–Leindler inequality).
  • This implies that convolution preserves log-concavity, since h(x,y) = f(x-yg(y) is log-concave if f and g are log-concave, and therefore
is log-concave.

Log-concave distributions

Log-concave distributions are necessary for a number of algorithms, e.g.

adaptive rejection sampling. Every distribution with log-concave density is a maximum entropy probability distribution with specified mean μ and Deviation risk measure D.[2]
As it happens, many common probability distributions are log-concave. Some examples:[3]

Note that all of the parameter restrictions have the same basic source: The exponent of non-negative quantity must be non-negative in order for the function to be log-concave.

The following distributions are non-log-concave for all parameters:

Note that the cumulative distribution function (CDF) of all log-concave distributions is also log-concave. However, some non-log-concave distributions also have log-concave CDF's:

The following are among the properties of log-concave distributions:

which is decreasing as it is the derivative of a concave function.

See also

Notes

  1. ^ .
  2. .
  3. ^ .
  4. ^ a b Prékopa, András (1971). "Logarithmic concave measures with application to stochastic programming". Acta Scientiarum Mathematicarum. 32: 301–316.

References