Maltase-glucoamylase

Source: Wikipedia, the free encyclopedia.
MGAM
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_004668
NM_001365693

NM_001171003
NM_001368875

RefSeq (protein)

NP_004659
NP_001352622

n/a

Location (UCSC)Chr 7: 141.91 – 142.11 MbChr 6: 40.61 – 40.75 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Maltase-glucoamylase, intestinal is an enzyme that in humans is encoded by the MGAM gene.[5][6]

Maltase-glucoamylase is an alpha-glucosidase digestive enzyme. It consists of two subunits with differing substrate specificity. Recombinant enzyme studies have shown that its N-terminal catalytic domain has highest activity against

alpha-amylase to digest the full range of dietary starches
.

Gene

The MGAM gene –– which is located on chromosome 7q34 [8] –– codes for the protein Maltase-Glucoamylase. An alternative name for Maltase-Glucoamylase is glucan 1,4-alpha-glycosidase.[9]

Tissue distribution

Maltase-glucoamylase is a membrane-bound enzyme located in the intestinal walls. This lining of the intestine forms brush border in which food has to pass in order for the intestines to absorb the food.[10]

Enzymatic mechanism

This enzyme is a part of a family of enzymes called

anomeric center.[12]

Structure

N-terminal maltase

The N-terminal maltase-glucoamylase enzymatic unit is in turn composed of 5 specific protein domains. The first of the 5 protein domains consist of a

maltotetrose
, and maltopentose.

C-terminal glucase

The C-terminal glucase enzymatic unit contains extra binding sites, which allows for it to bind to larger substrates for catalytic digestion.[10] It was originally understood that maltase-glucoamylase's crystalline structure was inherently similar throughout the N and C-termini. Further studies have found that the C-terminus is composed of 21 more amino acid residues than the N-terminus, which account for its difference in function. Sucrase-Isomaltase –– located on chromosome 3q26–– has a similar crystalline structure to maltase-glucoamylase and work in tandem in the human small intestine. They have been derived from a common ancestor, as they both come from the same GH31 family.[8] As a result of having similar properties, both of these enzymes work together in the small intestine in order to convert consumed starch into glucose for metabolic energy. The difference between these two enzymes is that maltase-glucoamylase has a specific activity at the 1-4 linkage of sugar, where at SI has a specific activity at the 1-6 linkage.[10]

See also

References

  1. ^ a b c ENSG00000282607 GRCh38: Ensembl release 89: ENSG00000257335, ENSG00000282607Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000068587Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: maltase-glucoamylase (alpha-glucosidase)".
  6. PMID 9446624
    .
  7. .
  8. ^ .
  9. .
  10. ^ .
  11. ^ "Glycoside hydrolases". CAZypedia. Retrieved 2021-04-30.
  12. S2CID 42054886
    .
  13. .

Further reading

External links

  • PDBe-KB provides an overview of all the structure information available in the PDB for Human Maltase-glucoamylase, intestinal