NA61 experiment

Source: Wikipedia, the free encyclopedia.

NA61/SHINE experiment at CERN
FormationData taking started on 18-04-2008
HeadquartersGeneva, Switzerland
Leader of Experiment
Marek Gazdzicki
Websitehttps://shine.web.cern.ch/
Super Proton Synchrotron
(SPS)
Linear accelerators for protons (Linac 2) and Lead (Linac 3)
(not marked)Proton Synchrotron Booster
PSProton Synchrotron

NA61/SHINE (standing for "SPS Heavy Ion and Neutrino Experiment") is a

protons and beryllium, argon, and xenon nuclei) with a variety of fixed nuclear targets
at the SPS energies.

About 135 physicists from 14 countries and 35 institutions work in NA61/SHINE, led by Marek Gazdzicki. NA61/SHINE is the second largest fixed target experiment at CERN.

Physics program

The NA61/SHINE physics program has been designed to measure hadron production in three different types of collisions:[1]

  • In
    heavy ion) collisions, in particular the measurement of fluctuations and long range correlations, with the aim to identify the properties of the onset of deconfinement and find evidence for the critical point of strongly interacting matter
    .
  • In proton–proton and proton–nucleus interactions needed as reference data for better understanding of nucleus–nucleus reactions; in particular with regards to correlations, fluctuations and high transverse momenta.
  • In hadron–nucleus interactions needed for
    cosmic-ray experiments (Pierre Auger Observatory and KASCADE
    ).

Detector

The NA61/SHINE experiment uses a large acceptance hadron spectrometer located on the H2 beam line in the North Area of CERN.[1] It consist of components used by the heavy ion NA49 experiment as well as those designed and constructed for NA61/SHINE.[2]

PSD detector for NA61

The main tracking devices are four large volume time projection chambers (TPCs), which are capable of detecting up to 70% of all charged particles created in the studied reactions. Two of them are located in the magnetic field of two super-conducting dipole magnets with maximum bending powers of 9 Tesla meters. Two others are positioned downstream of the magnets symmetrically with respect to the beam line. Additionally, four small volume TPCs placed directly along the beamline region are used in case of hadron and light ion beams.[2][3]

The setup is supplemented by

time of flight detector walls, which extend particle identification to low momenta (1 GeV/c < p ). Furthermore, the Projectile Spectator Detector (a calorimeter
) is positioned downstream of the time of flight detectors to measure energy of projectile fragments.

Collected data

Type of interaction Beam momentum Year Citation
π + Be 120 2016 CERN-SPSC-2017-038[4]
π + C 30, 60, 158, and 350 2009, 2012, 2016, and 2017 CERN-SPSC-2016-038,[5] PR D100 112004,[6] and PR D100 112001[7]
π + Al 60 2017 CERN-SPSC-2016-038[5] and PR D98 052001[8]
Kaon + C 158 2012 CERN-SPSC-2016-038[5] and MPL A34 1950078[9]
p + p 13, 20, 31, 40, 80, 158, and 400 2009, 2010, 2011, and 2016 EPJ C80 460,[10] SQM 2019 315,[11] and EPJ C74 2794[12]
p + Be 60, and 120 2016 and 2017 CERN-SPSC-2017-038,[4] and PR D100 112001[7]
p + C
p + (T2K replica target)
p + (NOvA replica target)
31, 60, 90, and 120 2007, 2009, 2010, 2012, 2016, 2017, and 2018 CERN-SPSC-2017-038,[4] CERN-SPSC-2016-038,[5] CERN-SPSC-2019-041,[13] PR D100 112001[7] and EPJ C76 617[14]
p + Al 60 2016 CERN-SPSC-2017-038[4] and NP B732 1[15]
p + Pb 30, 40, 80 and 158 2012, 2014, 2016, and 2017 CERN-SPSC-2015-036[16]
Be + Be 13A, 19A, 30A, 40A, 75A, and 150A 2011, 2012, and 2013 CERN-SPSC-2013-028,[17] PoS 364 305,[18] and EPJ C80 961[19]
C + C and C + CH 13A 2018 CERN-SPSC-2019-041[13]
Ar + Sc 13A, 19A, 30A, 40A, 75A and 150A 2015 CERN-SPSC-2015-036,[16] PoS 364 305,[18] Acta Phys. Pol. B Proc. Suppl. 10 645[20] and EPJ C81 397[21]
Xe + La 13A, 19A, 30A, 40A, 75A, and 150A 2017 CERN-SPSC-2018-029[22] and PoS 364 305[18]
Pb + Pb 13A, 30A, and 150A 2016 and 2018 CERN-SPSC-2016-038,[5] J. Phys. Conf. Ser. 1690 012127[23] and PR C77 064908[24]

Extended program: after Long Shutdown 2

NA61 experiment at CERN after Long Shutdown 2

In 2018 the NA61/SHINE collaboration published an addendum presenting an intent to upgrade the experimental facility and perform a new set of measurements after Long Shutdown 2.[25] As in the original program, the new one proposes studies of hadron-nucleus and nucleus-nucleus interactions for heavy ions, neutrino and cosmic-ray physics.

The heavy ions program will focus on study of charm hadron production (mostly D mesons) in lead-lead interactions.

In 2020 the SPS and PS Experiments Committee (SPSC) recommended approval of beam time in 2021.[26] The Research Board endorsed these recommendations.[27]

See also

References

  1. ^ a b c Antoniou, N.; et al. (NA61/SHINE Collaboration) (2006). "Study of hadron production in hadron–nucleus and nucleus–nucleus collisions at the CERN SPS". Proposal. SPSC-P-330, CERN-SPSC-2006-034.
  2. ^ a b Abgrall, N.; et al. (NA61/SHINE Collaboration) (2014). "NA61/SHINE facility at the CERN SPS: beams and detector system".
    S2CID 49214489
    .
  3. ^ Rumberger, B.; et al. (2020). "The Forward TPC system of the NA61/SHINE experiment at CERN: a tandem TPC concept".
    S2CID 216080710
    .
  4. ^ .
  5. ^ .
  6. .
  7. ^ .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. ^ .
  14. .
  15. .
  16. ^ .
  17. .
  18. ^ .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. ^ Aduszkiewicz, A.; et al. (NA61/SHINE Collaboration) (2018). "Study of Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS: Early Post-LS2 Measurements and Future Plans". Addendum (Proposal). CERN-SPSC-2018-008, SPSC-P-330-ADD-10.
  26. ^ "Minutes of the 136th Meeting of the SPSC, Tuesday and Wednesday, 21–22 January 2020". 2020. CERN-SPSC-2020-003 ; SPSC-136.
  27. ^ "Minutes of the 232nd meeting of the Research Board, held on 11 March 2020". 2020. CERN-DG-RB-2020-495 ; M-232.

External links