Root mucilage

Source: Wikipedia, the free encyclopedia.

Root

polysaccharides or long chains of sugar molecules.[1][2] This polysaccharide secretion of root exudate forms a gelatinous substance that sticks to the caps of roots.[3] Root mucilage is known to play a role in forming relationships with soil-dwelling life forms.[1][4] Just how this root mucilage is secreted is debated, but there is growing evidence that mucilage derives from ruptured cells. As roots penetrate through the soil, many of the cells surrounding the caps of roots are continually shed and replaced.[5] These ruptured or lysed cells release their component parts, which include the polysaccharides that form root mucilage. These polysaccharides come from the Golgi apparatus and plant cell wall, which are rich in plant-specific polysaccharides.[6] Unlike animal
cells, plant cells have a cell wall that acts as a barrier surrounding the cell providing strength, which supports plants just like a skeleton.

This cell wall is used to produce everyday products such as

fabrics, including cotton.[7]

Root mucilage is a part of a wider secrete from plant roots known as root exudate. Plant roots secrete a variety of organic molecules into the surrounding soil, such as proteins, enzymes, DNA, sugars and amino acids, which are the building blocks of life.[3][4] This collective secretion is known as root exudate. This root exudate prevents root infection from bacteria and fungi, helps the roots to penetrate through the soil, and can create a micro-climate that is beneficial to the plant.

Root mucilage composition

To determine the sugars within root mucilage,

gas chromatography linked to mass spectrometry.[8][9]

Several scientists have determined the composition of plant root mucilage using monosaccharide analysis and linkage analysis, showing that Maize (Zea mays) root mucilage contains high levels of galactose, xylose, arabinose, rhamnose, and glucose, and lower levels of uronic acid, mannose, fucose, and glucuronic acid.[10] Wheat (Triticum aestivum) root mucilage also contains high levels of xylose, arabinose, galactose, glucose, and lower levels of rhamnose, glucuronic acid and mannose.[11] Cowpea (Vigna unguiculata) also contains high levels of arabinose, galactose, glucose, fucose, and xylose, and lower levels of rhamnose, mannose, and glucuronic acid.[11] Many other plants have had their root mucilage composition determined using monosaccharide analysis and monosaccharide linkage analysis. With the following monosaccharides determined as well as their linkages, scientists have determined the presence of pectin, arabinogalactan proteins, xyloglucan, arabinan, and xylan, which are plant-specific polysaccharides within the root mucilage of plants.

Importance and role of root mucilage

Plants use up to 40% of their energy secreting root mucilage, which they generate from photosynthesis that takes place in the leaves.[4] Root mucilage plays a role in developing a symbiotic relationship with the soil-dwelling fungi. This important relationship is known to affect 94% of land plants,[11] and benefits plants by increasing water and nutrient uptake from the soil, particularly phosphorus. In return, the fungi receive food in the form of carbohydrates from the plant in the form of broken-down root mucilage. Without this relationship, many plants would struggle to gain sufficient water or nutrients.[12]

Root mucilage also helps soil to stick to roots.

micro-climate.[14] Root mucilage contributes to the particular hydrophysical properties of the rhizosphere, which can affect the plant's response to water deficit.[15] For example, root mucilage can reduce evaporation and store water in the rhizosphere.[16]

See also

References