Selection theorem

Source: Wikipedia, the free encyclopedia.

In

selection function from a given set-valued map. There are various selection theorems, and they are important in the theories of differential inclusions, optimal control, and mathematical economics.[1]

Preliminaries

Given two sets X and Y, let F be a set-valued function from X and Y. Equivalently, is a function from X to the power set of Y.

A function is said to be a selection of F if

In other words, given an input x for which the original function F returns multiple values, the new function f returns a single value. This is a special case of a choice function.

The axiom of choice implies that a selection function always exists; however, it is often important that the selection have some "nice" properties, such as continuity or measurability. This is where the selection theorems come into action: they guarantee that, if F satisfies certain properties, then it has a selection f that is continuous or has other desirable properties.

Selection theorems for set-valued functions

The Michael selection theorem[2] says that the following conditions are sufficient for the existence of a continuous selection:

The approximate selection theorem[3] states the following:

Suppose X is a compact metric space, Y a non-empty compact, convex subset of a normed vector space, and Φ: X → a multifunction all of whose values are compact and convex. If graph(Φ) is closed, then for every ε > 0 there exists a continuous function f : XY with graph(f) ⊂ [graph(Φ)]ε.

Here, denotes the -dilation of , that is, the union of radius- open balls centered on points in . The theorem implies the existence of a continuous approximate selection.

Another set of sufficient conditions for the existence of a continuous approximate selection is given by the Deutsch–Kenderov theorem,[4] whose conditions are more general than those of Michael's theorem (and thus the selection is only approximate):

  • X is a
    paracompact
    space;
  • Y is a normed vector space;
  • F is almost lower hemicontinuous, that is, at each , for each neighborhood of there exists a neighborhood of such that ;
  • for all x in X, the set F(x) is nonempty and convex.

In a later note, Xu proved that the Deutsch–Kenderov theorem is also valid if is a locally convex topological vector space.[5]

The Yannelis-Prabhakar selection theorem[6] says that the following conditions are sufficient for the existence of a continuous selection:

The Kuratowski and Ryll-Nardzewski measurable selection theorem says that if X is a Polish space and its

σ-algebra
, is the set of nonempty closed subsets of X, is a measurable space, and is an -weakly measurable map (that is, for every open subset we have ), then has a selection that is -measurable.[7]

Other selection theorems for set-valued functions include:

Selection theorems for set-valued sequences

References