Krein–Milman theorem

In the
(TVSs).Krein–Milman theorem
This theorem generalizes to infinite-dimensional spaces and to arbitrary compact convex sets the following basic observation: a convex (i.e. "filled") triangle, including its perimeter and the area "inside of it", is equal to the convex hull of its three vertices, where these vertices are exactly the extreme points of this shape. This observation also holds for any other convex polygon in the plane
Statement and definitions
Preliminaries and definitions

Throughout, will be a real or complex vector space.
For any elements and in a vector space, the set is called the closed line segment or closed interval between and The open line segment or open interval between and is when while it is when [2] it satisfies and The points and are called the endpoints of these interval. An interval is said to be non-degenerate or proper if its endpoints are distinct.
The intervals and always contain their endpoints while and never contain either of their endpoints. If and are points in the real line then the above definition of is the same as its usual definition as a
For any the point is said to (strictly) lie between and if belongs to the open line segment [2]
If is a subset of and then is called an extreme point of if it does not lie between any two distinct points of That is, if there does not exist and such that and In this article, the set of all extreme points of will be denoted by [2]
For example, the vertices of any convex polygon in the plane are the extreme points of that polygon. The extreme points of the
A set is called convex if for any two points contains the line segment The smallest convex set containing is called the convex hull of and it is denoted by The closed convex hull of a set denoted by is the smallest closed and convex set containing It is also equal to the intersection of all closed convex subsets that contain and to the closure of the convex hull of ; that is, where the right hand side denotes the closure of while the left hand side is notation. For example, the convex hull of any set of three distinct points forms either a closed line segment (if they are collinear) or else a solid (that is, "filled") triangle, including its perimeter. And in the plane the unit circle is not convex but the closed unit disk is convex and furthermore, this disk is equal to the convex hull of the circle.
The separable Hilbert space Lp space of square-summable sequences with the usual norm has a compact subset whose convex hull is not closed and thus also not compact.[3] However, like in all complete Hausdorff locally convex spaces, the closed convex hull of this compact subset will be compact.[4] But if a Hausdorff locally convex space is not complete then it is in general not guaranteed that will be compact whenever is; an example can even be found in a (non-complete)
Statement
Krein–Milman theorem[6]—If is a compact subset of a Hausdorff locally convex topological vector space then the set of extreme points of has the same closed convex hull as
In the case where the compact set is also convex, the above theorem has as a corollary the first part of the next theorem,[6] which is also often called the Krein–Milman theorem.
Krein–Milman theorem[2]—Suppose is a
Moreover, if then is equal to the closed convex hull of if and only if where is closure of
The convex hull of the extreme points of forms a convex subset of so the main burden of the proof is to show that there are enough extreme points so that their convex hull covers all of For this reason, the following corollary to the above theorem is also often called the Krein–Milman theorem.
(KM) Krein–Milman theorem (Existence)[2]—Every non-empty compact convex subset of a Hausdorff locally convex topological vector space has an extreme point; that is, the set of its extreme points is not empty.
To visualized this theorem and its conclusion, consider the particular case where is a convex polygon. In this case, the corners of the polygon (which are its extreme points) are all that is needed to recover the polygon shape. The statement of the theorem is false if the polygon is not convex, as then there are many ways of drawing a polygon having given points as corners.
The requirement that the convex set be compact can be weakened to give the following strengthened generalization version of the theorem.[7]
(SKM) Strong Krein–Milman theorem (Existence)[8]—Suppose is a Hausdorff locally convex topological vector space and is a non-empty convex subset of with the property that whenever is a cover of by convex closed subsets of such that has the finite intersection property, then is not empty. Then is not empty.
The property above is sometimes called quasicompactness or convex compactness. Compactness implies convex compactness because a topological space is compact if and only if every family of closed subsets having the finite intersection property (FIP) has non-empty intersection (that is, its kernel is not empty). The definition of convex compactness is similar to this characterization of compact spaces in terms of the FIP, except that it only involves those closed subsets that are also convex (rather than all closed subsets).
More general settings
The assumption of local convexity for the ambient space is necessary, because James Roberts (1977) constructed a counter-example for the non-locally convex space where [9]
Linearity is also needed, because the statement fails for weakly compact convex sets in CAT(0) spaces, as proved by Nicolas Monod (2016).[10] However, Theo Buehler (2006) proved that the Krein–Milman theorem does hold for metrically compact CAT(0) spaces.[11]
Related results
Under the previous assumptions on if is a subset of and the closed convex hull of is all of then every extreme point of belongs to the closure of This result is known as Milman's (partial) converse to the Krein–Milman theorem.[12]
The Choquet–Bishop–de Leeuw theorem states that every point in is the
Relation to the axiom of choice
Under the Zermelo–Fraenkel set theory (ZF) axiomatic framework, the axiom of choice (AC) suffices to prove all versions of the Krein–Milman theorem given above, including statement KM and its generalization SKM. The axiom of choice also implies, but is not equivalent to, the Boolean prime ideal theorem (BPI), which is equivalent to the Banach–Alaoglu theorem. Conversely, the Krein–Milman theorem KM together with the Boolean prime ideal theorem (BPI) imply the axiom of choice.[13] In summary, AC holds if and only if both KM and BPI hold.[8] It follows that under ZF, the axiom of choice is equivalent to the following statement:
- The closed unit ball of the continuous dual space of any real normed space has an extreme point.[8]
Furthermore,
History
The original statement proved by Mark Krein and David Milman (1940) was somewhat less general than the form stated here.[14]
Earlier, Hermann Minkowski (1911) proved that if is
See also
- Banach–Alaoglu theorem – Theorem in functional analysis
- Carathéodory's theorem (convex hull) – Point in the convex hull of a set P in Rd, is the convex combination of d+1 points in P
- Choquet theory – Area of functional analysis and convex analysis
- Helly's theorem – Theorem about the intersections of d-dimensional convex sets
- Radon's theorem – Says d+2 points in d dimensions can be partitioned into two subsets whose convex hulls intersect
- Shapley–Folkman lemma – Sums of sets of vectors are nearly convex
- Topological vector space – Vector space with a notion of nearness
Citations
- ^ Rudin 1991, p. 75 Theorem 3.23.
- ^ a b c d e Narici & Beckenstein 2011, pp. 275–339.
- ^ Aliprantis & Border 2006, p. 185.
- ^ Trèves 2006, p. 145.
- ^ Trèves 2006, p. 67.
- ^ a b Grothendieck 1973, pp. 187–188.
- ^ Pincus 1974, pp. 204–205.
- ^ a b c d Bell, J. L.; Jellett, F. (1971). "On the Relationship Between the Boolean Prime Ideal Theorem and Two Principles in Functional Analysis" (PDF). Bull. Acad. Polon. Sci. sciences math., astr. et phys. 19 (3): 191–194. Retrieved 23 Dec 2021.
- arXiv:1602.06752
- Bibcode:2006math......4187B
- Doklady Akademii Nauk SSSR(in Russian), 57: 119–122
- . Retrieved 11 June 2018.
Theorem 1.2. BPI [the Boolean Prime Ideal Theorem] & KM [Krein-Milman] (*) [the unit ball of the dual of a normed vector space has an extreme point].... Theorem 2.1. (*) AC [the Axiom of Choice].
- ^ Minkowski, Hermann (1911), Gesammelte Abhandlungen, vol. 2, Leipzig: Teubner, pp. 157–161
- S2CID 122897233; (see p. 16)
Bibliography
- Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. Vol. 639. Berlin New York: OCLC 297140003.
- OCLC 262692874.
- OCLC 17499190.
- National institute of standards and technology. Retrieved 2011-03-24.
- Borowski, Ephraim J.; Borwein, Jonathan M. (1989). "extreme point". Dictionary of mathematics. Collins dictionary. ISBN 0-00-434347-6.
- OCLC 886098.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. OCLC 8210342.
- Kelley, John L.; Namioka, Isaac (1963). Linear Topological Spaces. OCLC 913438183.
- OCLC 840293704.
- OCLC 180577972.
- ISSN 0075-8434.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. OCLC 144216834.
- N. K. Nikol'skij (Ed.). Functional Analysis I. Springer-Verlag, 1992.
- Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. OCLC 589250.
- H. L. Royden, Real Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.
- OCLC 21163277.
- OCLC 840278135.
- OCLC 175294365.
- OCLC 853623322.
- OCLC 849801114.
This article incorporates material from Krein–Milman theorem on