Solar pond

Source: Wikipedia, the free encyclopedia.
Solar Evaporation Ponds in the Atacama Desert

A solar pond is a pool of saltwater which collects and stores solar thermal energy. The saltwater naturally forms a vertical salinity gradient also known as a "halocline", in which low-salinity water floats on top of high-salinity water. The layers of salt solutions increase in concentration (and therefore density) with depth. Below a certain depth, the solution has a uniformly high salt concentration.

Description

When the sun's rays contact the bottom of a shallow pool, they heat the water adjacent to the bottom. When water at the bottom of the pool is heated, it becomes less dense than the cooler water above it, and

saturated. High-salinity water at the bottom of the pond does not mix readily with the low-salinity water above it, so when the bottom layer of water is heated, convection occurs separately in the bottom and top layers, with only mild mixing between the two. This greatly reduces heat loss, and allows for the high-salinity water to get up to 90 °C while maintaining 30 °C low-salinity water.[1] This hot, salty water can then be pumped away for use in electricity generation, through a turbine
or as a source of thermal energy.

Advantages and disadvantages

Efficiency

The energy obtained is in the form of low-grade heat of 70 to 80 °C compared to an assumed 20 °C ambient temperature. According to the

levelised energy cost than a solar concentrating system
.

Development

Further research is aimed at addressing the problems, such as the development of membrane ponds. These use a thin permeable membrane to separate the layers without allowing salt to pass through.

Examples

The largest operating solar pond for electricity generation was the Beit HaArava pond built in Israel and operated up until 1988. It had an area of 210,000 m² and gave an electrical output of 5 MW.[3]

India was the first Asian country to have established a solar pond in

Ministry of Non-Conventional Energy Sources in 1987 and completed in 1993 after a sustained collaborative effort by TERI, the Gujarat Energy Development Agency, and the GDDC (Gujarat Dairy Development Corporation Ltd). The solar pond successfully demonstrated the expediency of the technology by supplying 80,000 litres of hot water daily to the plant. It is designed to supply about 22,000,000 kWh [citation needed] of thermal energy annually . The Energy and Resources Institute provided all technical inputs and took up the complete execution of research, development, and demonstration. TERI operated and maintained this facility until 1996 before handing it over to the GDDC. The solar pond functioned effortlessly till the year 2000 when severe financial losses crippled GDDC. Subsequently, the Bhuj earthquake left the Kutch Dairy non-functional.[4]

The 0.8-acre (3,200 m2) solar pond powering 20% of Bruce Foods Corporation's operations in El Paso, Texas is the second largest in the U.S. It is also the first ever salt-gradient solar pond in the U.S.[5]

See also

References

  1. ^ G. Boyle. Renewable Energy: Power for a Sustainable Future, 2nd ed.
  2. ^ G. Boyle. Renewable Energy: Power for a Sustainable Future, 2nd ed. Oxford, UK: Oxford University Press, 2004.
  3. ^ C, Nielsen; A, Akbarzadeh; J, Andrews; HRL, Becerra; P, Golding (2005), The History of Solar Pond Science and Technology, Proceedings of the 2005 Solar World Conference, Orlando, FL{{citation}}: CS1 maint: location missing publisher (link)
  4. ^ Solar Gradient Solar Ponds, Teriin, archived from the original on 26 October 2008, retrieved 28 November 2009.
  5. CiteSeerX 10.1.1.680.7971
    .

External links