Stokes' law

Source: Wikipedia, the free encyclopedia.

In

George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.[2]

Statement of the law

The force of viscosity on a small sphere moving through a viscous fluid is given by:[3][4]

where (in

SI units
):

Stokes' law makes the following assumptions for the behavior of a particle in a fluid:

  • Laminar flow
  • No inertial effects (zero Reynolds number)
  • Spherical particles
  • Homogeneous (uniform in composition) material
  • Smooth surfaces
  • Particles do not interfere with each other.

Depending on desired accuracy, the failure to meet these assumptions may or may not require the use of a more complicated model. To 10% error, for instance, velocities need be limited to those giving Re < 1.

For molecules Stokes' law is used to define their Stokes radius and diameter.

The

CGS
unit of kinematic viscosity was named "stokes" after his work.

Applications

Stokes' law is the basis of the falling-sphere

glycerine or golden syrup as the fluid, and the technique is used industrially to check the viscosity of fluids used in processes. Several school experiments often involve varying the temperature and/or concentration of the substances used in order to demonstrate the effects this has on the viscosity. Industrial methods include many different oils, and polymer
liquids such as solutions.

The importance of Stokes' law is illustrated by the fact that it played a critical role in the research leading to at least three Nobel Prizes.[5]

Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity.[5]

In air, the same theory can be used to explain why small water droplets (or ice crystals) can remain suspended in air (as clouds) until they grow to a critical size and start falling as rain (or snow and hail).[6] Similar use of the equation can be made in the settling of fine particles in water or other fluids.[citation needed]

Terminal velocity of sphere falling in a fluid

Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force Fd and force by gravity Fg.

At

gravity[7]
) is given by:

where (in

SI units
):

  • ρp is the
    mass density
    of the sphere [kg/m3]
  • ρf is the mass density of the fluid [kg/m3]
  • g is the
    gravitational acceleration
    [m/s2]

Requiring the force balance Fd = Fe and solving for the velocity v gives the terminal velocity vs. Note that since the excess force increases as R3 and Stokes' drag increases as R, the terminal velocity increases as R2 and thus varies greatly with particle size as shown below. If a particle only experiences its own weight while falling in a viscous fluid, then a terminal velocity is reached when the sum of the frictional and the

gravitational force. This velocity v [m/s] is given by:[7]

where (in SI units):

  • g is the gravitational field strength [m/s2]
  • R is the radius of the spherical particle [m]
  • ρp is the mass density of the particle [kg/m3]
  • ρf is the mass density of the fluid [kg/m3]
  • μ is the
    dynamic viscosity
    [kg/(m•s)].

Derivation

Steady Stokes flow

In

where:

By using some vector calculus identities, these equations can be shown to result in Laplace's equations for the pressure and each of the components of the vorticity vector:[8]

  and  

Additional forces like those by gravity and buoyancy have not been taken into account, but can easily be added since the above equations are linear, so

linear superposition
of solutions and associated forces can be applied.

Transversal flow around a sphere

Streamlines of creeping flow past a sphere in a fluid. Isocontours of the ψ function (values in contour labels).

For the case of a sphere in a uniform

axisymmetric around the z–axis, it is independent of the azimuth
φ.

In this cylindrical coordinate system, the incompressible flow can be described with a Stokes stream function ψ, depending on r and z:[9][10]

with ur and uz the flow velocity components in the r and z direction, respectively. The azimuthal velocity component in the φ–direction is equal to zero, in this axisymmetric case. The volume flux, through a tube bounded by a surface of some constant value ψ, is equal to 2πψ and is constant.[9]

For this case of an axisymmetric flow, the only non-zero component of the vorticity vector ω is the azimuthal φ–component ωφ[11][12]

The Laplace operator, applied to the vorticity ωφ, becomes in this cylindrical coordinate system with axisymmetry:[12]

From the previous two equations, and with the appropriate boundary conditions, for a far-field uniform-flow velocity u in the z–direction and a sphere of radius R, the solution is found to be[13]

Stokes-Flow around sphere with parameters of Far-Field velocity , radius of sphere , viscosity of water (T = 20°C) . Shown are the field-lines of velocity-field and the amplitudes of velocity, pressure and vorticity with pseudo-colors.

The solution of velocity in cylindrical coordinates and components follows as:

The solution of vorticity in cylindrical coordinates follows as:

The solution of pressure in cylindrical coordinates follows as:

The solution of pressure in

spherical coordinates
follows as:

The formula of pressure is also called dipole potential analogous to the concept in electrostatics.

A more general formulation, with arbitrary far-field velocity-vector , in cartesian coordinates follows with:

In this formulation the non-conservative term represents a kind of so-called Stokeslet. The Stokeslet is the Green's function of the Stokes-Flow-Equations. The conservative term is equal to the dipole gradient field. The formula of vorticity is analogous to the Biot–Savart law in electromagnetism.

The following formula describes the viscous stress tensor for the special case of Stokes flow. It is needed in the calculation of the force acting on the particle. In Cartesian coordinates the vector-gradient is identical to the

Jacobian matrix. The matrix I represents the identity-matrix
.

The force acting on the sphere is to calculate by surface-integral, where er represents the radial unit-vector of spherical-coordinates:

Rotational flow around a sphere

Stokes-Flow around sphere: , ,

Other types of Stokes flow

Although the liquid is static and the sphere is moving with a certain velocity, with respect to the frame of sphere, the sphere is at rest and liquid is flowing in the opposite direction to the motion of the sphere.

See also

Sources

  • .
  • . Originally published in 1879, the 6th extended edition appeared first in 1932.

References

  1. . The formula for terminal velocity (V) appears on p. [52], equation (127).
  2. ^ Batchelor (1967), p. 233.
  3. .
  4. .
  5. ^ .
  6. ^ Hadley, Peter. "Why don't clouds fall?". Institute of Solid State Physics, TU Graz. Archived from the original on 12 June 2017. Retrieved 30 May 2015.
  7. ^ a b Lamb (1994), §337, p. 599.
  8. ^ a b Batchelor (1967), section 4.9, p. 229.
  9. ^ a b Batchelor (1967), section 2.2, p. 78.
  10. ^ Lamb (1994), §94, p. 126.
  11. ^ Batchelor (1967), section 4.9, p. 230
  12. ^ a b Batchelor (1967), appendix 2, p. 602.
  13. ^ Lamb (1994), §337, p. 598.
  14. PMC 6735480
    . 20190277.