Wetlands of Louisiana

Source: Wikipedia, the free encyclopedia.
Atchafalaya Basin

The wetlands of Louisiana are water-saturated

coastal and swamp regions of southern Louisiana
, often called 'Bayou'.

The Louisiana coastal zone stretches from the border of

Barrier Islands, and Terrebonne Basin Barrier Islands.[3] The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) program, through the NOAA Habitat Conservation National Marine Fisheries Service funded $102 million in construction for deteriorated wetlands and barrier island habitats.[4]

Geography

The

estuaries)."[5] Different wetland types arise due to a few key factors, primarily: water levels, fertility, natural disturbance and salinity.[6] Around Lake Pontchartrain, for example, these few factors produce wetlands including bottomland hardwoods, cypress swamp, freshwater marsh and brackish marsh.[7] High levels of flooding reduce the abundance of trees, leaving four principal marsh types: saline, brackish, intermediate and fresh.[8]

Although these areas make up a very small percentage of the total land found in the United States, southern Louisiana contains 40 to 45 percent of the wetlands found in the lower states. This is because Louisiana is the drainage gateway to the Gulf of Mexico for the Lower Mississippi Regional Watershed. The Lower Mississippi Regional Watershed drains more than 24 million acres (97,000 km2) in seven states from southern Illinois to the Gulf of Mexico. Hence the wetlands of this area are important at the national scale.[9]

On the east side of Louisiana, coastal wetlands intergrade with long leaf pine savannas, which support many rare and unusual species such as pitcher plants and gopher tortoises.

global warming and coastal erosion
, may not affect the western coastline as profoundly as it will the eastern half, which may be replaced in open water over substantial areas.

Loss of the wetlands

Diorama picturing wetland loss in coastal Louisiana as attributed to human activities

The wide range of benefits provided by the wetlands of this region were not recognized by a majority of policy makers in the early 20th century. Wetlands provide vital ecological services including flood control, fisheries production, carbon storage, water filtration and enhanced disagreement over the relative importance of these factors,

Mississippi River Gulf Outlet, which introduced salt water into freshwater and intermediate marshes and facilitated significant erosion.[13]
A brief explanation of various causes follows.

Subsidence of the coast is certainly occurring. Some people blame the direct effects of oil and gas extraction. The logic is that as billions of barrels of oil and saltwater and as trillions of cubic feet of gas were removed from the reservoirs in which they had accumulated over millions of years, these reservoirs lost their ability to support the weight of the rocks above.[14] As these structures slowly collapsed, the soil above gradually subsided. The wetlands on the surface began to sink into the gulf waters. Others argue that subsidence is a natural process in deltas, as sediments compress, and that the real problem is the lack of flood waters that would normally deposit new layers of sediment.[15][16] The role of hurricanes is also a matter of disagreement; some studies show that hurricanes actually build elevation in marshes.[17] Another factor is rising sea levels estimated to be about 2mm per year[18] associated with global warming.[19][20]

Sediment compaction is also a significant source of wetland loss. Compaction rates have been conservatively estimated at 5mm to 10mm or more per year for the organic-rich Holocene sediment (peat) that predominates the Mississippi River Delta environment. Given the ubiquity of this compaction-prone sediment in southern Louisiana, coastal restoration project managers (see: Louisiana Coastal Protection and Restoration Authority) must consider the underlying geology of their regions prior to development as to not exacerbate rates of compaction.[21]

An extensive levee system aided by locks and dams has been developed in the waterways of the lower Mississippi River.[22] The levees (designed to prevent flooding along the waterways) prevent needed sediment from being distributed into the marshes downriver. With no new accretion and with steady subsidence, the wetlands slowly are replaced by encroaching saltwater from the Gulf. As a result of this apparent engineering dilemma, large areas of marsh are being lost to the ocean. Since 1930 water has consumed more than 1,900 square miles (4,900 km2) of the state's land. This loss equates to the disappearance of 25 square miles (65 km2) of wetlands each year, or a football field sized area every 30 minutes. This loss can be reversed (at least in some areas) but, only with large scale restoration, including the removal of levees to allow the Mississippi River to carry sediment into these areas.[6][23]

Another factor that damaged wetlands was large scale logging, particularly the extensive logging of cypress forests in the early 1900s.[24] One early logger described it this way: "We just use the old method of going in and cutting down the swamp and tearing it up and bringing the cypress out. When a man's in here with all the heavy equipment, he might as well cut everything he can make a board foot out of; we're not ever coming back in here again".[25][self-published source] This logging often required construction of canals, which, once the logging was finished, allowed salt water to enter the wetlands and prevent regeneration of the cypress.[7]

As if these problems were not enough, the introduction of nutria from South America in the 1930s provided an entirely new species of grazing mammal. Although only a few escaped, there are now millions.[26][27][self-published source] Natural grazing by muskrat was now accelerated by grazing from nutria. By removing plants, nutria both cause loss of vegetation, and, perhaps more seriously, a loss of dead organic matter which would otherwise accumulate as peat and raise the level of the marsh[28] One of the most important natural controls on nutria is large alligators, which may provide a useful tool for biological control of nutria, and therefore for reduced impacts of grazing.[29]

Southern Louisiana's disappearing wetlands have a broad impact ranging from cultural to economic.

wax myrtle and submerged aquatic plants such as Vallisneria and Ruppia are native to Louisiana wetlands. Wetland plants act as natural filters, helping to remove heavy metals, sewage, and pesticides from polluted water before reaching the Gulf of Mexico. Animal species native to these areas include osprey, anhinga, ibis, herons, egrets, manatees, alligators, and beavers. Although there are several naturally occurring forces that adversely affect the wetland regions of Louisiana, many believe it is human intervention that has caused the majority of the decline.[30]

Prior to the building of levees on the Mississippi River, the wetlands were kept in balance by occasional floods, which fill the area with sediment, and subsidence, the sinking of land. After the levees were built, however, flood sediment flowed directly into the Gulf of Mexico. This subsidence along with the recent sea level rise tipped the balance toward subsidence rather than marsh growth. This, along with the canals built in the area, caused decline of the wetlands and also caused less weakening of and less protection from recent hurricanes such as Hurricane Katrina.[30] The Lake Pontchartrain Basin Foundation has developed a comprehensive management plan[31] for the eastern regions of the Louisiana coast, placing emphasis upon restoration of river habitats, cypress swamps and fringing marsh. This could be a model applied to other coastal regions.

Oil company canals

The dredging of access canals by oil companies has long been considered to be a cause of coastal erosion. These concerns were raised in 1925 and continued with a 2013 lawsuit against many oil companies.[32]

Policy and protection

The National Oceanic and Atmospheric Administration (NOAA) enacted the Coastal Zone Management Act of 1972 (CZMA) amended by 16 U.S.C. 1451 et seq. that includes Louisiana, to develop plans providing assessment priorities for land conservation needs. The agency provides guidance in selecting conservation projects in the state. In 2002 the Secretary of Commerce was directed by Congress to establish the Coastal and Estuarine Land Conservation Program (CELCP), "for the purpose of protecting important coastal and estuarine areas that have significant conservation, recreation, ecological, historical, or aesthetic values, or that are threatened by conversion from their natural or recreational state to other uses", through the Department of Commerce, Justice, and State Appropriations Act of 2002 by Public Law 107-77. This was re-authorized in 2009 by the Omnibus Public Land Management Act (P.L. 111-11).

In 2002, Congress directed the Secretary of Commerce to establish a Coastal and Estuarine Land Conservation Program (CELCP) "for the purpose of protecting important coastal and estuarine areas that have significant conservation, recreation, ecological, historical, or aesthetic values, or that are threatened by conversion from their natural or recreational state to other uses" (The Department of Commerce, Justice, and State Appropriations Act of 2002, Public Law 107-77). CELCP was re-authorized in 2009 as part of the Omnibus Public Land Management Act (P.L. 111-11).

The Louisiana Department of Natural Resources, Office of Coastal Management, Inter-agency Affairs and Field Service Division (LDNR/OCM/IAFSD) became the lead agency for implementing a state coastal management program, or CELCP program, based on federal guidelines. Louisiana chose the conditionally approved Coastal Nonpoint Pollution Control Program (CNPCP) boundaries. On January 23, 2008, the Governor of Louisiana signed Executive Order No. BJ 2008-7, creating the Coastal Protection and Restoration Authority (CPRA), that implemented the Integrated Ecosystem Restoration and Hurricane Protection plan, becoming known as the "Master Plan."

See also

References

  1. ^ "Department of Natural Resources | State of Louisiana". Dnr.louisiana.gov. Retrieved 2021-11-26.
  2. JSTOR 4297682
    .
  3. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2017-01-31. Retrieved 2017-02-28.{{cite web}}: CS1 maint: archived copy as title (link)
  4. ^ "NOAA Habitat Conservation | Restoring Barrier Islands in Louisiana". Archived from the original on 2017-03-07. Retrieved 2017-02-28.
  5. ^ "EPA: Term :". Iaspub.epa.gov. Retrieved 13 February 2022.
  6. ^ a b Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p.
  7. ^ .
  8. ^ Chabreck, R. H. 1972. Vegetation, Water and Soil Characteristics of the Louisiana Coastal Region. Louisiana State University, Agricultural Experiment Station Bulletin No. 664
  9. ^ Gosselink, J. G., J. M. Coleman, and R. E. Stewart, Jr. 1998. Coastal Louisiana. pp. 385–436. In M. J. Mac, P. A. Opler, C. E. Puckett Haecker, and P. D. Doran 1998. Status and Trends of the Nation's Biological Resources, 2 Vols. Reston: U.S. Department of the Interior, U.S. Geological Survey.
  10. ^ a b Keddy, P.A. 2008. Water, Earth, Fire: Louisiana's Natural Heritage. Xlibris, Philadelphia. 229 p.
  11. ^ Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p. Figure 2.25, p. 73.
  12. S2CID 86622393
    .
  13. ^ ""Closing the Mississippi River Gulf Outlet: Environmental and Economic Considerations."" (PDF). Lacoast.gov. 27 February 2013. Archived (PDF) from the original on Jan 5, 2024. Coastal Wetlands Planning Protection and Restoration Act. Louisiana State Government
  14. ^ E.P. Mallman and M.D. Zoback (2007), Subsidence in the Louisiana coastal zone due to hydrocarbon production. In: Lemckert, C. (ed.), International Coastal Symposium (ICS) 2007 Proceedings (Gold Coast, Queensland, Australia). Journal of Coastal Research, Special Issue No. 50, pp. 443–448.
  15. ^ Boesch, D. F., Josselyn, M. N., Mehta, A. J., Morris, J. T., Nuttle, W. K., Simenstad, C. A., and Swift, D. P. J. (1994). Scientific assessment of coastal wetland loss, restoration and management in Louisiana. Journal of Coastal Research, Special Issue No. 20.
  16. S2CID 36952782
    .
  17. ^ Liu, K. and Fearn, M. L. (2000). Holocene history of catastrophic hurricane landfalls along the Gulf of Mexico coast reconstructed from coastal lake and marsh sediments. In Current Stresses and Potential Vulnerabilities: Implications of Global Change for the Gulf Coast Region of the United States, eds. Z. H. Ning and K. K. Abdollhai, pp. 38–47. Baton Rouge, LA: Franklin Press for Gulf Coast Regional Climate Change Council.
  18. ^ "Sea Level Trends - Global Regional Trends". Archived from the original on 2016-03-04. Retrieved 2016-02-27.
  19. ^ Ricardo A. Olea and James L Coleman., Jr. (2014), A synoptic examination of causes of land loss in southern Louisiana as they relate to the exploitation of subsurface geologic resources. Journal of Coastal Research, v. 30, no. 5, p. 1025−1044.
  20. .
  21. ^ Törnqvist, Torbjörn E., et al. "Mississippi Delta subsidence primarily caused by compaction of Holocene strata." Nature Geoscience 1.3 (2008): 173-176.
  22. ^ Reuss, M. (1998). Designing the Bayous: The Control of Water in the Atchafalaya Basin 1800–1995. Alexandria, VA: U.S. Army Corps of Engineers Office of History.
  23. ^ Turner, R. E. and Streever, B. 2002. Approaches to Coastal Wetland Restoration: Northern Gulf of Mexico. The Hague, the Netherlands: SPB Academic Publishing.
  24. ^ Norgress, R. E. (1947). "The history of the cypress lumber industry in Louisiana". Louisiana Historical Quarterly. 30: 979–1059.
  25. ^ Keddy, P.A. 2008. Water, Earth, Fire: Louisiana's Natural Heritage. Xlibris, Philadelphia. 229 p. P. 122.
  26. JSTOR 3796144
    .
  27. ^ Keddy, P.A. 2008. Water, Earth, Fire: Louisiana's Natural Heritage. Xlibris, Philadelphia. 229 p. P. 148-150.
  28. ^ Keddy, P.A. 2000. Wetland Ecology: Principles and Conservation. Cambridge University Press, Cambridge, UK. 614 p. P. 163-165.
  29. ^ Keddy, P.A., L. Gough, J.A. Nyman, T. McFalls, J. Carter and J. Siegrist. 2009. Alligator hunters, pelt traders, and runaway consumption of Gulf coast marshes: A trophic cascade perspective on coastal wetland losses. p. 115-133 in B.R. Silliman, E.D. Grosholz, and M.D. Bertness (eds.) Human Impacts on Salt Marshes. A Global Perspective. University of California Press, Berkeley, CA.
  30. ^
  31. ^ "Lake Pontchartrain Basin Foundation". Archived from the original on 2015-09-06. Retrieved 2012-05-04.
  32. ^ "Tulane Law School". Law.tulane.edu. Retrieved 2021-11-26.

External links