Algorithm
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In mathematics and computer science, an algorithm (/ˈælɡərɪðəm/ ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation.[1] Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning).
In contrast, a heuristic is an approach to solving problems that do not have well-defined correct or optimal results.[2] For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation.
As an
Etymology
Around 825 AD, Persian scientist and polymath Muḥammad ibn Mūsā al-Khwārizmī wrote kitāb al-ḥisāb al-hindī ("Book of Indian computation") and kitab al-jam' wa'l-tafriq al-ḥisāb al-hindī ("Addition and subtraction in Indian arithmetic").[1] In the early 12th century, Latin translations of said al-Khwarizmi texts involving the Hindu–Arabic numeral system and arithmetic appeared, for example Liber Alghoarismi de practica arismetrice, attributed to John of Seville, and Liber Algorismi de numero Indorum, attributed to Adelard of Bath.[10] Hereby, alghoarismi or algorismi is the Latinization of Al-Khwarizmi's name; the text starts with the phrase Dixit Algorismi, or "Thus spoke Al-Khwarizmi".[2] Around 1230, the English word algorism is attested and then by Chaucer in 1391, English adopted the French term.[3][4][clarification needed] In the 15th century, under the influence of the Greek word ἀριθμός (arithmos, "number"; cf. "arithmetic"), the Latin word was altered to algorithmus.[citation needed]
Definition
One informal definition is "a set of rules that precisely defines a sequence of operations",
Most algorithms are intended to be
History
This section is missing information about 20th and 21st century development of computer algorithms.(October 2023) |
Ancient algorithms
Step-by-step procedures for solving mathematical problems have been recorded since antiquity. This includes in
The earliest evidence of algorithms is found in ancient
Algorithms for arithmetic are also found in ancient
The first cryptographic algorithm for deciphering encrypted code was developed by Al-Kindi, a 9th-century Arab mathematician, in A Manuscript On Deciphering Cryptographic Messages. He gave the first description of cryptanalysis by frequency analysis, the earliest codebreaking algorithm.[22]
Computers
Weight-driven clocks
Bolter credits the invention of the weight-driven clock as "the key invention [of
Electromechanical relay
Bell and Newell (1971) write that the
Telephone-switching networks of
Formalization
In 1928, a partial formalization of the modern concept of algorithms began with attempts to solve the
Representations
Algorithms can be expressed in many kinds of notation, including
Turing machines
There are many possible representations and
Flowchart representation
The graphical aid called a flowchart offers a way to describe and document an algorithm (and a computer program corresponding to it). It has four primary symbols: arrows showing program flow, rectangles (SEQUENCE, GOTO), diamonds (IF-THEN-ELSE), and dots (OR-tie). Sub-structures can "nest" in rectangles, but only if a single exit occurs from the superstructure.
Algorithmic analysis
It is often important to know how much time, storage, or other cost an algorithm may require. Methods have been developed for the analysis of algorithms to obtain such quantitative answers (estimates); for example, an algorithm that adds up the elements of a list of n numbers would have a time requirement of , using big O notation. The algorithm only needs to remember two values: the sum of all the elements so far, and its current position in the input list. If the space required to store the input numbers is not counted, it has a space requirement of , otherwise is required.
Different algorithms may complete the same task with a different set of instructions in less or more time, space, or 'effort' than others. For example, a binary search algorithm (with cost ) outperforms a sequential search (cost ) when used for table lookups on sorted lists or arrays.
Formal versus empirical
The analysis, and study of algorithms is a discipline of computer science. Algorithms are often studied abstractly, without referencing any specific programming language or implementation. Algorithm analysis resembles other mathematical disciplines as it focuses on the algorithm's properties, not implementation. Pseudocode is typical for analysis as it is a simple and general representation. Most algorithms are implemented on particular hardware/software platforms and their algorithmic efficiency is tested using real code. The efficiency of a particular algorithm may be insignificant for many "one-off" problems but it may be critical for algorithms designed for fast interactive, commercial or long life scientific usage. Scaling from small n to large n frequently exposes inefficient algorithms that are otherwise benign.
Empirical testing is useful for uncovering unexpected interactions that affect performance. Benchmarks may be used to compare before/after potential improvements to an algorithm after program optimization. Empirical tests cannot replace formal analysis, though, and are non-trivial to perform fairly.[35]
Execution efficiency
To illustrate the potential improvements possible even in well-established algorithms, a recent significant innovation, relating to FFT algorithms (used heavily in the field of image processing), can decrease processing time up to 1,000 times for applications like medical imaging.[36] In general, speed improvements depend on special properties of the problem, which are very common in practical applications.[37] Speedups of this magnitude enable computing devices that make extensive use of image processing (like digital cameras and medical equipment) to consume less power.
Design
Algorithm design is a method or mathematical process for problem-solving and engineering algorithms. The design of algorithms is part of many solution theories, such as
Structured programming
Per the
Legal status
By themselves, algorithms are not usually patentable. In the United States, a claim consisting solely of simple manipulations of abstract concepts, numbers, or signals does not constitute "processes" (USPTO 2006), so algorithms are not patentable (as in
Classification
By implementation
- Recursion
- A stacks to solve problems. Problems may be suited for one implementation or the other. The Tower of Hanoiis a puzzle commonly solved using recursive implementation. Every recursive version has an equivalent (but possibly more or less complex) iterative version, and vice versa.
- Serial, parallel or distributed
- Algorithms are usually discussed with the assumption that computers execute one instruction of an algorithm at a time on serial computers. Serial algorithms are designed for these environments, unlike parallel or distributed algorithms. Parallel algorithms take advantage of computer architectures where multiple processors can work on a problem at the same time. Distributed algorithms use multiple machines connected via a computer network. Parallel and distributed algorithms divide the problem into subproblems and collect the results back together. Resource consumption in these algorithms is not only processor cycles on each processor but also the communication overhead between the processors. Some sorting algorithms can be parallelized efficiently, but their communication overhead is expensive. Iterative algorithms are generally parallelizable, but some problems have no parallel algorithms and are called inherently serial problems.
- Deterministic or non-deterministic
- heuristics.
- Exact or approximate
- While many algorithms reach an exact solution, approximation algorithms seek an approximation that is close to the true solution. Such algorithms have practical value for many hard problems. For example, the Knapsack problem, where there is a set of items and the goal is to pack the knapsack to get the maximum total value. Each item has some weight and some value. The total weight that can be carried is no more than some fixed number X. So, the solution must consider weights of items as well as their value.[45]
- Quantum algorithm
- quantum computation. The term is usually used for those algorithms which seem inherently quantum or use some essential feature of Quantum computing such as quantum superposition or quantum entanglement.
By design paradigm
Another way of classifying algorithms is by their design methodology or paradigm. Some common paradigms are:
- Brute-force or exhaustive search
- Brute force is a problem-solving method of systematically trying every possible option until the optimal solution is found. This approach can be very time-consuming, testing every possible combination of variables. It is often used when other methods are unavailable or too complex. Brute force can solve a variety of problems, including finding the shortest path between two points and cracking passwords.
- Divide and conquer
- A binary search algorithm.
- Search and enumeration
- Many problems (such as playing graph exploration algorithm specifies rules for moving around a graph and is useful for such problems. This category also includes search algorithms, branch and bound enumeration, and backtracking.
- Randomized algorithm
- Such algorithms make some choices randomly (or pseudo-randomly). They find approximate solutions when finding exact solutions may be impractical (see heuristic method below). For some problems the fastest approximations must involve some randomness.[46] Whether randomized algorithms with polynomial time complexity can be the fastest algorithm for some problems is an open question known as the P versus NP problem. There are two large classes of such algorithms:
- polynomial time.
- ZPP.
- Reduction of complexity
- This technique transforms difficult problems into better-known problems solvable with (hopefully) transform and conquer.
- Back tracking
- In this approach, multiple solutions are built incrementally and abandoned when it is determined that they cannot lead to a valid full solution.
Optimization problems
For optimization problems there is a more specific classification of algorithms; an algorithm for such problems may fall into one or more of the general categories described above as well as into one of the following:
- Linear programming
- When searching for optimal solutions to a linear function bound by linear equality and inequality constraints, the constraints can be used directly to produce optimal solutions. There are algorithms that can solve any problem in this category, such as the popular simplex algorithm.[47] Problems that can be solved with linear programming include the maximum flow problem for directed graphs. If a problem also requires that any of the unknowns be integers, then it is classified in integer programming. A linear programming algorithm can solve such a problem if it can be proved that all restrictions for integer values are superficial, i.e., the solutions satisfy these restrictions anyway. In the general case, a specialized algorithm or an algorithm that finds approximate solutions is used, depending on the difficulty of the problem.
- Dynamic programming
- When a problem shows optimal substructures—meaning the optimal solution can be constructed from optimal solutions to subproblems—and overlapping subproblems, meaning the same subproblems are used to solve many different problem instances, a quicker approach called dynamic programming avoids recomputing solutions. For example, Floyd–Warshall algorithm, the shortest path between a start and goal vertex in a weighted graph can be found using the shortest path to the goal from all adjacent vertices. Dynamic programming and memoizationgo together. Unlike divide and conquer, dynamic programming subproblems often overlap. The difference between dynamic programming and simple recursion is the caching or memoization of recursive calls. When subproblems are independent and do not repeat, memoization does not help; hence dynamic programming is not applicable to all complex problems. Using memoization dynamic programming reduces the complexity of many problems from exponential to polynomial.
- The greedy method
- Sollinare greedy algorithms that can solve this optimization problem.
- The heuristic method
- In heuristic algorithms find solutions close to the optimal solution when finding the optimal solution is impractical. These algorithms get closer and closer to the optimal solution as they progress. In principle, if run for an infinite amount of time, they will find the optimal solution. They can ideally find a solution very close to the optimal solution in a relatively short time. These algorithms include local search, tabu search, simulated annealing, and genetic algorithms. Some, like simulated annealing, are non-deterministic algorithms while others, like tabu search, are deterministic. When a bound on the error of the non-optimal solution is known, the algorithm is further categorized as an approximation algorithm.
Examples
One of the simplest algorithms finds the largest number in a list of numbers of random order. Finding the solution requires looking at every number in the list. From this follows a simple algorithm, which can be described in plain English as:
High-level description:
- If a set of numbers is empty, then there is no highest number.
- Assume the first number in the set is the largest.
- For each remaining number in the set: if this number is greater than the current largest, it becomes the new largest.
- When there are no unchecked numbers left in the set, consider the current largest number to be the largest in the set.
(Quasi-)formal description: Written in prose but much closer to the high-level language of a computer program, the following is the more formal coding of the algorithm in pseudocode or pidgin code:
Algorithm LargestNumber Input: A list of numbers L. Output: The largest number in the list L.
if L.size = 0 return null largest ← L[0] for each item in L, do if item > largest, then largest ← item return largest
- "←" denotes assignment. For instance, "largest ← item" means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the following value.
See also
- Abstract machine
- ALGOL
- Algorithm aversion
- Algorithm engineering
- Algorithm characterizations
- Algorithmic bias
- Algorithmic composition
- Algorithmic entities
- Algorithmic synthesis
- Algorithmic technique
- Algorithmic topology
- Computational mathematics
- Garbage in, garbage out
- Introduction to Algorithms (textbook)
- Government by algorithm
- List of algorithms
- List of algorithm general topics
- Medium is the message
- Regulation of algorithms
- Theory of computation
Notes
- ^ a b "Definition of ALGORITHM". Merriam-Webster Online Dictionary. Archived from the original on February 14, 2020. Retrieved November 14, 2019.
- ^ ISBN 1402030045
- ^ a b "Any classical mathematical algorithm, for example, can be described in a finite number of English words" (Rogers 1987:2).
- ^ a b Well defined concerning the agent that executes the algorithm: "There is a computing agent, usually human, which can react to the instructions and carry out the computations" (Rogers 1987:2).
- ^ "an algorithm is a procedure for computing a function (concerning some chosen notation for integers) ... this limitation (to numerical functions) results in no loss of generality", (Rogers 1987:1).
- zero or more inputs, i.e., quantitieswhich are given to it initially before the algorithm begins" (Knuth 1973:5).
- ^ "A procedure which has all the characteristics of an algorithm except that it possibly lacks finiteness may be called a 'computational method'" (Knuth 1973:5).
- ^ "An algorithm has one or more outputs, i.e., quantities which have a specified relation to the inputs" (Knuth 1973:5).
- ^ Whether or not a process with random interior processes (not including the input) is an algorithm is debatable. Rogers opines that: "a computation is carried out in a discrete stepwise fashion, without the use of continuous methods or analog devices ... carried forward deterministically, without resort to random methods or devices, e.g., dice" (Rogers 1987:2).
- ^ Blair, Ann, Duguid, Paul, Goeing, Anja-Silvia and Grafton, Anthony. Information: A Historical Companion, Princeton: Princeton University Press, 2021. p. 247
- ^ Stone 1973:4
- ^
ISBN 9780262536370. Archivedfrom the original on December 22, 2019. Retrieved May 27, 2019.
[...] the next level of abstraction of central bureaucracy: globally operating algorithms.
- ^
Dietrich, Eric (1999). "Algorithm". In Wilson, Robert Andrew; Keil, Frank C. (eds.). The MIT Encyclopedia of the Cognitive Sciences. MIT Cognet library. Cambridge, Massachusetts: MIT Press (published 2001). p. 11. ISBN 9780262731447. Retrieved July 22, 2020.
An algorithm is a recipe, method, or technique for doing something.
- ^ Stone requires that "it must terminate in a finite number of steps" (Stone 1973:7–8).
- ^ Boolos and Jeffrey 1974,1999:19
- ^ ISBN 9783642181924.
- ^ ISBN 978-93-86279-25-5.
- ^ Hayashi, T. (2023, January 1). Brahmagupta. Encyclopedia Britannica.
- JSTOR 3027363.
- ^ ISBN 978-1-118-46029-0.
- ISBN 978-3-540-63369-3.
- ^ ISBN 9783319016283.
- S2CID 7829945. Archived from the original(PDF) on December 24, 2012.
- ISBN 978-0-387-95136-2.
- ^ Ast, Courtney. "Eratosthenes". Wichita State University: Department of Mathematics and Statistics. Archived from the original on February 27, 2015. Retrieved February 27, 2015.
- ^ Bolter 1984:24
- ^ Bolter 1984:26
- ^ Bolter 1984:33–34, 204–206.
- ^ Bell and Newell diagram 1971:39, cf. Davis 2000
- ^ Melina Hill, Valley News Correspondent, A Tinkerer Gets a Place in History, Valley News West Lebanon NH, Thursday, March 31, 1983, p. 13.
- ^ Davis 2000:14
- ^ Kleene 1943 in Davis 1965:274
- ^ Rosser 1939 in Davis 1965:225
- ^ a b c d Sipser 2006:157
- S2CID 40772241.
- ^ Gillian Conahan (January 2013). "Better Math Makes Faster Data Networks". discovermagazine.com. Archived from the original on May 13, 2014. Retrieved May 13, 2014.
- ^ Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price, "ACM-SIAM Symposium On Discrete Algorithms (SODA) Archived July 4, 2013, at the Wayback Machine, Kyoto, January 2012. See also the sFFT Web Page Archived February 21, 2012, at the Wayback Machine.
- ISBN 978-0-471-38365-9. Archivedfrom the original on April 28, 2015. Retrieved June 14, 2018.
- ^ "Big-O notation (article) | Algorithms". Khan Academy. Retrieved June 3, 2024.
- ISBN 0-201-13433-0.
- ^ Tausworthe 1977:101
- ^ Tausworthe 1977:142
- ^ Knuth 1973 section 1.2.1, expanded by Tausworthe 1977 at pages 100ff and Chapter 9.1
- ISSN 0099-9660. Retrieved March 29, 2017.
- from the original on October 18, 2017. Retrieved September 19, 2017.
- S2CID 13268711.
- ^
George B. Dantzigand Mukund N. Thapa. 2003. Linear Programming 2: Theory and Extensions. Springer-Verlag.
Bibliography
- Axt, P (1959). "On a Subrecursive Hierarchy and Primitive Recursive Degrees". Transactions of the American Mathematical Society. 92 (1): 85–105. JSTOR 1993169.
- Bell, C. Gordon and Newell, Allen (1971), Computer Structures: Readings and Examples, McGraw–Hill Book Company, New York. ISBN 0-07-004357-4.
- Blass, Andreas; Gurevich, Yuri (2003). "Algorithms: A Quest for Absolute Definitions" (PDF). Bulletin of European Association for Theoretical Computer Science. 81. Archived (PDF) from the original on October 9, 2022. Includes a bibliography of 56 references.
- Bolter, David J. (1984). Turing's Man: Western Culture in the Computer Age (1984 ed.). Chapel Hill, NC: The University of North Carolina Press. ISBN 0-8078-4108-0
- ISBN 978-0-521-20402-6.: cf. Chapter 3 Turing machines where they discuss "certain enumerable sets not effectively (mechanically) enumerable".
- Burgin, Mark (2004). Super-Recursive Algorithms. Springer. ISBN 978-0-387-95569-8.
- Campagnolo, M.L., Moore, C., and Costa, J.F. (2000) An analog characterization of the subrecursive functions. In Proc. of the 4th Conference on Real Numbers and Computers, Odense University, pp. 91–109
- JSTOR 2371045. Reprinted in The Undecidable, p. 89ff. The first expression of "Church's Thesis". See in particular page 100 (The Undecidable) where he defines the notion of "effective calculability" in terms of "an algorithm", and he uses the word "terminates", etc.
- S2CID 5557237. Reprinted in The Undecidable, p. 110ff. Church shows that the Entscheidungsproblem is unsolvable in about 3 pages of text and 3 pages of footnotes.
- Daffa', Ali Abdullah al- (1977). The Muslim contribution to mathematics. London: Croom Helm. ISBN 978-0-85664-464-1.
- Emil Postare included; those cited in the article are listed here by author's name.
- Howard Aiken, etc.
- This article incorporates NIST.
- Dean, Tim (2012). "Evolution and moral diversity". Baltic International Yearbook of Cognition, Logic and Communication. 7. .
- ISBN 978-0-684-80290-9.
- Dilson, Jesse (2007). The Abacus ((1968, 1994) ed.). St. Martin's Press, NY. ISBN 0-312-10409-X
- Yuri Gurevich, Sequential Abstract State Machines Capture Sequential Algorithms, ACM Transactions on Computational Logic, Vol 1, no 1 (July 2000), pp. 77–111. Includes bibliography of 33 sources.
- ISBN 0-674-32449-8(pbk.)
- ISBN 0-671-49207-1. Cf. Chapter "The Spirit of Truth" for a history leading to, and a discussion of, his proof.
- S2CID 120517999. Archived from the originalon September 3, 2014. Retrieved September 30, 2013. Presented to the American Mathematical Society, September 1935. Reprinted in The Undecidable, p. 237ff. Kleene's definition of "general recursion" (known now as mu-recursion) was used by Church in his 1935 paper An Unsolvable Problem of Elementary Number Theory that proved the "decision problem" to be "undecidable" (i.e., a negative result).
- Church thesis).
- ISBN 978-0-7204-2103-3.
- ISBN 978-0-201-89683-1.
- Knuth, Donald (1969). Volume 2/Seminumerical Algorithms, The Art of Computer Programming First Edition. Reading, Massachusetts: Addison–Wesley.
- Kosovsky, N.K. Elements of Mathematical Logic and its Application to the theory of Subrecursive Algorithms, LSU Publ., Leningrad, 1981
- S2CID 2509896.
- A.A. Markov (1954) Theory of algorithms. [Translated by Jacques J. Schorr-Kon and PST staff] Imprint Moscow, Academy of Sciences of the USSR, 1954 [i.e., Jerusalem, Israel Program for Scientific Translations, 1961; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington] Description 444 p. 28 cm. Added t.p. in Russian Translation of Works of the Mathematical Institute, Academy of Sciences of the USSR, v. 42. Original title: Teoriya algerifmov. [QA248.M2943 Dartmouth College library. U.S. Dept. of Commerce, Office of Technical Services, number OTS 60-51085.]
- ISBN 978-0-13-165449-5. Minsky expands his "...idea of an algorithm – an effective procedure..." in chapter 5.1 Computability, Effective Procedures and Algorithms. Infinite machines.
- S2CID 40284503. Reprinted in The Undecidable, pp. 289ff. Post defines a simple algorithmic-like process of a man writing marks or erasing marks and going from box to box and eventually halting, as he follows a list of simple instructions. This is cited by Kleene as one source of his "Thesis I", the so-called Church–Turing thesis.
- Rogers, Hartley Jr. (1987). Theory of Recursive Functions and Effective Computability. The MIT Press. ISBN 978-0-262-68052-3.
- S2CID 39499392. Reprinted in The Undecidable, p. 223ff. Herein is Rosser's famous definition of "effective method": "...a method each step of which is precisely predetermined and which is certain to produce the answer in a finite number of steps... a machine which will then solve any problem of the set with no human intervention beyond inserting the question and (later) reading the answer" (p. 225–226, The Undecidable)
- Santos-Lang, Christopher (2015). "Moral Ecology Approaches to Machine Ethics" (PDF). In van Rysewyk, Simon; Pontier, Matthijs (eds.). Machine Medical Ethics. Intelligent Systems, Control and Automation: Science and Engineering. Vol. 74. Switzerland: Springer. pp. 111–127. ISBN 978-3-319-08107-6. Archived(PDF) from the original on October 9, 2022.
- Scott, Michael L. (2009). Programming Language Pragmatics (3rd ed.). Morgan Kaufmann Publishers/Elsevier. ISBN 978-0-12-374514-9.
- Sipser, Michael (2006). Introduction to the Theory of Computation. PWS Publishing Company. ISBN 978-0-534-94728-6.
- Sober, Elliott; Wilson, David Sloan (1998). Unto Others: The Evolution and Psychology of Unselfish Behavior. Cambridge: Harvard University Press. ISBN 9780674930469.
- Stone, Harold S. (1972). Introduction to Computer Organization and Data Structures (1972 ed.). McGraw-Hill, New York. ISBN 978-0-07-061726-1. Cf. in particular the first chapter titled: Algorithms, Turing Machines, and Programs. His succinct informal definition: "...any sequence of instructions that can be obeyed by a robot, is called an algorithm" (p. 4).
- Tausworthe, Robert C (1977). Standardized Development of Computer Software Part 1 Methods. Englewood Cliffs NJ: Prentice–Hall, Inc. ISBN 978-0-13-842195-3.
- S2CID 73712.. Corrections, ibid, vol. 43(1937) pp. 544–546. Reprinted in The Undecidable, p. 116ff. Turing's famous paper completed as a Master's dissertation while at King's College Cambridge UK.
- . Reprinted in The Undecidable, pp. 155ff. Turing's paper that defined "the oracle" was his PhD thesis while at Princeton.
- United States Patent and Trademark Office (2006), 2106.02 **>Mathematical Algorithms: 2100 Patentability, Manual of Patent Examining Procedure (MPEP). Latest revision August 2006
- Zaslavsky, C. (1970). Mathematics of the Yoruba People and of Their Neighbors in Southern Nigeria. The Two-Year College Mathematics Journal, 1(2), 76–99. https://doi.org/10.2307/3027363
Further reading
- ISBN 978-0-520-25419-0.
- Berlinski, David (2001). The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer. Harvest Books. ISBN 978-0-15-601391-8.
- Chabert, Jean-Luc (1999). A History of Algorithms: From the Pebble to the Microchip. Springer Verlag. ISBN 978-3-540-63369-3.
- Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest; Clifford Stein (2009). Introduction To Algorithms (3rd ed.). MIT Press. ISBN 978-0-262-03384-8.
- Harel, David; Feldman, Yishai (2004). Algorithmics: The Spirit of Computing. Addison-Wesley. ISBN 978-0-321-11784-7.
- Hertzke, Allen D.; McRorie, Chris (1998). "The Concept of Moral Ecology". In Lawler, Peter Augustine; McConkey, Dale (eds.). Community and Political Thought Today. Westport, CT: Praeger.
- Jon Kleinberg, Éva Tardos(2006): Algorithm Design, Pearson/Addison-Wesley, ISBN 978-0-32129535-4
- Knuth, Donald E. (2000). Selected Papers on Analysis of Algorithms Archived July 1, 2017, at the Wayback Machine. Stanford, California: Center for the Study of Language and Information.
- Knuth, Donald E. (2010). Selected Papers on Design of Algorithms Archived July 16, 2017, at the Wayback Machine. Stanford, California: Center for the Study of Language and Information.
- Wallach, Wendell; Allen, Colin (November 2008). Moral Machines: Teaching Robots Right from Wrong. US: Oxford University Press. ISBN 978-0-19-537404-9.
- Bleakley, Chris (2020). Poems that Solve Puzzles: The History and Science of Algorithms. Oxford University Press. ISBN 978-0-19-885373-2.
External links
- "Algorithm". Encyclopedia of Mathematics. EMS Press. 2001 [1994].
- Weisstein, Eric W. "Algorithm". MathWorld.
- Dictionary of Algorithms and Data Structures – National Institute of Standards and Technology
- Algorithm repositories
- The Stony Brook Algorithm Repository – State University of New York at Stony Brook
- Collected Algorithms of the ACM – Associations for Computing Machinery
- The Stanford GraphBase Archived December 6, 2015, at the Wayback Machine – Stanford University