Arithmetic
Arithmetic is an elementary branch of
Arithmetic systems can be distinguished based on the type of numbers they operate on. Integer arithmetic is about calculations with positive and negative integers. Rational number arithmetic involves operations on fractions of integers. Real number arithmetic is about calculations with real numbers, which include both rational and irrational numbers.
Another distinction is based on the numeral system employed to perform calculations. Decimal arithmetic is the most common. It uses the basic numerals from 0 to 9 and their combinations to express numbers. Binary arithmetic, by contrast, is used by most computers and represents numbers as combinations of the basic numerals 0 and 1. Computer arithmetic deals with the specificities of the implementation of binary arithmetic on computers. Some arithmetic systems operate on mathematical objects other than numbers, such as interval arithmetic and matrix arithmetic.
Arithmetic operations form the basis of many branches of mathematics, such as
The practice of arithmetic is at least thousands and possibly tens of thousands of years old.
Definition, etymology, and related fields
Arithmetic is the fundamental branch of mathematics that studies numbers and their operations. In particular, it deals with numerical calculations using the arithmetic operations of addition, subtraction, multiplication, and division.[1] In a wider sense, it also includes exponentiation, extraction of roots, and logarithm.[2] The term arithmetic has its root in the Latin term arithmetica which derives from the Ancient Greek words ἀριθμός (arithmos), meaning 'number', and ἀριθμητική τέχνη (arithmetike tekhne), meaning 'the art of counting'.[3]
There are disagreements about its precise definition. According to a narrow characterization, arithmetic deals only with
Arithmetic is closely related to
Numbers
Kinds

The main kinds of numbers employed in arithmetic are
Based on how natural and whole numbers are used, they can be distinguished into
A number is rational if it can be represented as the ratio of two integers. For instance, the rational number is formed by dividing the integer 1, called the numerator, by the integer 2, called the denominator. Other examples are and . The set of rational numbers includes all integers, which are fractions with a denominator of 1. The symbol of the rational numbers is .

Numeral systems
A
The simplest non-positional system is the unary numeral system. It relies on one symbol for the number 1. All higher numbers are written by repeating this symbol. For example, the number 7 can be represented by repeating the symbol for 1 seven times. This system makes it cumbersome to write large numbers, which is why many non-positional systems include additional symbols to directly represent larger numbers.[30] Variations of the unary numeral systems are employed in tally sticks using dents and in tally marks.[31]

A numeral system is positional if the position of a basic numeral in a compound expression determines its value. Positional numeral systems have a radix that acts as a multiplicand of the different positions. For each subsequent position, the radix is raised to a higher power. In the common decimal system, also called the Hindu–Arabic numeral system, the radix is 10. This means that the first digit is multiplied by , the next digit is multiplied by , and so on. For example, the decimal numeral 532 stands for . Because of the effect of the digits' positions, the numeral 532 differs from the numerals 325 and 253 even though they have the same digits.[34]
Another positional numeral system used extensively in computer arithmetic is the binary system, which has a radix of 2. This means that the first digit is multiplied by , the next digit by , and so on. For example, the number 13 is written as 1101 in the binary notation, which stands for . In computing, each digit in the binary notation corresponds to one
Operations
Arithmetic operations are ways of combining, transforming, or manipulating numbers. They are
Two important concepts in relation to arithmetic operations are identity elements and inverse elements. The identity element or neutral element of an operation does not cause any change if it is applied to another element. For example, the identity element of addition is 0 since any sum of a number and 0 results in the same number. The inverse element is the element that results in the identity element when combined with another element. For instance, the additive inverse of the number 6 is -6 since their sum is 0.[41]
There are not only inverse elements but also inverse operations. In an informal sense, one operation is the inverse of another operation if it undoes the first operation. For example, subtraction is the inverse of addition since a number returns to its original value if a second number is first added and subsequently subtracted, as in . Defined more formally, the operation "" is an inverse of the operation "" if it fulfills the following condition: if and only if .[42]
Addition and subtraction
Addition is an arithmetic operation in which two numbers, called the addends, are combined into a single number, called the sum. The symbol of addition is . Examples are and .[44] The term summation is used if several additions are performed in a row.[45] Counting is a type of repeated addition in which the number 1 is continuously added.[46]
Subtraction is the inverse of addition. In it, one number, known as the subtrahend, is taken away from another, known as the minuend. The result of this operation is called the difference. The symbol of subtraction is .[47] Examples are and . Subtraction is often treated as a special case of addition: instead of subtracting a positive number, it is also possible to add a negative number. For instance . This helps to simplify mathematical computations by reducing the number of basic arithmetic operations needed to perform calculations.[48]
The additive identity element is 0 and the additive inverse of a number is the negative of that number. For instance, and . Addition is both commutative and associative.[49]
Multiplication and division
Multiplication is an arithmetic operation in which two numbers, called the multiplier and the multiplicand, are combined into a single number called the product.[50][d] The symbols of multiplication are , , and *. Examples are and . If the multiplicand is a natural number then multiplication is the same as repeated addition, as in .[52]
Division is the inverse of multiplication. In it, one number, known as the dividend, is split into several equal parts by another number, known as the divisor. The result of this operation is called the quotient. The symbols of division are and . Examples are and .[53] Division is often treated as a special case of multiplication: instead of dividing by a number, it is also possible to multiply by its reciprocal. The reciprocal of a number is 1 divided by that number. For instance, .[54]
The
Exponentiation and logarithm
Exponentiation is an arithmetic operation in which a number, known as the base, is raised to the power of another number, known as the exponent. The result of this operation is called the power. Exponentiation is sometimes expressed using the symbol ^ but the more common way is to write the exponent in
Roots are a special type of exponentiation using a fractional exponent. For example, the square root of a number is the same as raising the number to the power of and the cube root of a number is the same as raising the number to the power of . Examples are and .[58]
Logarithm is the inverse of exponentiation. The logarithm of a number to the base is the
Exponentiation and logarithm do not have general identity elements and inverse elements like addition and multiplication. The neutral element of exponentiation in relation to the exponent is 1, as in . However, exponentiation does not have a general identity element since 1 is not the neutral element for the base.[60] Exponentiation and logarithm are neither commutative nor associative.[61]
Types
Different types of arithmetic systems are discussed in the academic literature. They differ from each other based on what type of number they operate on, what numeral system they use to represent them, and whether they operate on mathematical objects other than numbers.[62]
Integer arithmetic

Integer arithmetic is the branch of arithmetic that deals with the manipulation of positive and negative whole numbers.
+ | 0 | 1 | 2 | 3 | 4 | ... |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | ... |
1 | 1 | 2 | 3 | 4 | 5 | ... |
2 | 2 | 3 | 4 | 5 | 6 | ... |
3 | 3 | 4 | 5 | 6 | 7 | ... |
4 | 4 | 5 | 6 | 7 | 8 | ... |
... | ... | ... | ... | ... | ... | ... |
× | 0 | 1 | 2 | 3 | 4 | ... |
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | ... |
1 | 0 | 1 | 2 | 3 | 4 | ... |
2 | 0 | 2 | 4 | 6 | 8 | ... |
3 | 0 | 3 | 6 | 9 | 12 | ... |
4 | 0 | 4 | 8 | 12 | 16 | ... |
... | ... | ... | ... | ... | ... | ... |
For operations on numbers with more than one digit, different techniques can be employed to calculate the result by using several one-digit operations in a row. For example, in the method addition with carries, the two numbers are written one above the other. Starting from the rightmost digit, each pair of digits is added together. The rightmost digit of the sum is written below them. If the sum is a two-digit number then the leftmost digit, called the "carry", is added to the next pair of digits to the left. This process is repeated until all digits have been added.[65] Other methods used for integer additions are the number line method, the partial sum method, and the compensation method.[66] A similar technique is utilized for subtraction: it also starts with the rightmost digit and uses a "borrow" or a negative carry for the column on the left if the result of the one-digit subtraction is negative.[67]
A basic technique of integer multiplication employs repeated addition. For example, the product of can be calculated as .
Integer arithmetic is not closed under division. This means that when dividing one integer by another integer, the result is not always an integer. For instance, 7 divided by 2 is not a whole number but 3.5.[73] One way to ensure that the result is an integer is to round the result to a whole number. However, this method leads to inaccuracies as the original value is altered.[74] Another method is to perform the division only partially and retain the remainder. For example, 7 divided by 2 is 3 with a remainder of 1. These difficulties are avoided by rational number arithmetic, which allows for the exact representation of fractions.[75]
A simple method to calculate exponentiation is by repeated multiplication. For instance, the exponentiation of can be calculated as .[76] A more efficient technique used for large exponents is exponentiation by squaring. It breaks down the calculation into a number of squaring operations. For example, the exponentiation can be written as . By taking advantage of repeated squaring operations, only 7 individual operations are needed rather than the 64 operations required for regular repeated multiplication.[77] Methods to calculate logarithms include the Taylor series and continued fractions.[78] Integer arithmetic is not closed under logarithm and under exponentiation with negative exponents, meaning that the result of these operations is not always an integer.[79]
Number theory
Number theory studies the structure and properties of integers as well as the relations and laws between them.
Influential theorems in number theory include the
Rational number arithmetic
Rational number arithmetic is the branch of arithmetic that deals with the manipulation of numbers that can be expressed as a ratio of two integers.[93] Most arithmetic operations on rational numbers can be calculated by performing a series of integer arithmetic operations on the numerators and the denominators of the involved numbers. If two rational numbers have the same denominator then they can be added by adding their numerators and keeping the common denominator. For example, . A similar procedure is used for subtraction. If the two numbers do not have the same denominator then they must be transformed to find a common denominator. This can be achieved by scaling the first number with the denominator of the second number while scaling the second number with the denominator of the first number. For instance, .[94]
Two rational numbers are multiplied by multiplying their numerators and their denominators respectively, as in . Dividing one rational number by another can be achieved by multiplying the first number with the reciprocal of the second number. This means that the numerator and the denominator of the second number change position. For example, .[95] Unlike integer arithmetic, rational number arithmetic is closed under division as long as the divisor is not 0.[96]
Both integer arithmetic and rational number arithmetic are not closed under exponentiation and logarithm.[97] One way to calculate exponentiation with a fractional exponent is to perform two separate calculations: one exponentiation using the numerator of the exponent followed by drawing the nth root of the result based on the denominator of the exponent. For example, . The first operation can be completed using methods like repeated multiplication or exponentiation by squaring. One way to get an approximate result for the second operation is to employ Newton's method, which uses a series of steps to gradually refine an initial guess until it reaches the desired level of accuracy.[98] The Taylor series or the continued fraction method can be utilized to calculate logarithms.[99]
The
Real number arithmetic
Real number arithmetic is the branch of arithmetic that deals with the manipulation of both rational and irrational numbers. Irrational numbers are numbers that cannot be expressed through fractions or repeated decimals, like the root of 2 and π.[104] Unlike rational number arithmetic, real number arithmetic is closed under exponentiation as long as it uses a positive number as its base. The same is true for the logarithm of positive real numbers as long as the logarithm base is positive and not 1.[105]
Irrational numbers involve an infinite non-repeating series of decimal digits. Because of this, there is often no simple and accurate way to express the results of arithmetic operations like or .[106] In cases where absolute precision is not required, the problem of calculating arithmetic operations on real numbers is usually addressed by truncation or rounding. For truncation, a certain number of leftmost digits are kept and remaining digits are discarded or replaced by zeros. For example, the number π has an infinite number of digits starting with 3.14159.... If this number is truncated to 4 decimal places, the result is 3.141. Rounding is a similar process in which the last preserved digit is increased by one if the next digit is 5 or greater but remains the same if the next digit is less than 5, so that the rounded number is the best approximation of a given precision for the original number. For instance, if the number π is rounded to 4 decimal places, the result is 3.142 because the following digit is a 5, so 3.142 is closer to π than 3.141.[107] These methods allow computers to efficiently perform approximate calculations on real numbers.[108]
Approximations and errors
In science and engineering, numbers represent estimates of physical quantities derived from measurement or modeling. Unlike mathematically exact numbers such as π or , scientifically relevant numerical data are inherently inexact, involving some
In performing calculations with uncertain quantities, the
More sophisticated methods of dealing with uncertain values include
The precision of numerical quantities can be expressed uniformly using normalized scientific notation, which is also convenient for concisely representing numbers which are much larger or smaller than 1. Using scientific notation, a number is decomposed into the product of a number between 1 and 10, called the significand, and 10 raised to some integer power, called the exponent. The significand consists of the significant digits of the number, and is written as a leading digit 1–9 followed by a decimal point and a sequence of digits 0–9. For example, the normalized scientific notation of the number 8276000 is with significand 8.276 and exponent 6, and the normalized scientific notation of the number 0.00735 is with significand 7.35 and exponent −3.[117] Unlike ordinary decimal notation, where trailing zeros of large numbers are implicitly considered to be non-significant, in scientific notation every digit in the significand is considered significant, and adding trailing zeros indicates higher precision. For example, while the number 1200 implicitly has only 2 significant digits, the number explicitly has 3.[118]
A common method employed by computers to approximate real number arithmetic is called
Tool use
Forms of arithmetic can also be distinguished by the
The human body can also be employed as an arithmetic tool. The use of hands in

Tally marks are a simple system based on external tools other than the body. This system relies on mark making, such as strokes drawn on a surface or notches carved into a wooden stick, to keep track of quantities. Some forms of tally marks arrange the strokes in groups of five to make them easier to read.[129]
The abacus is a more advanced tool to represent numbers and perform calculations. An abacus usually consists of a series of rods, each holding several beads. Each bead represents a quantity, which is counted if the bead is moved from one end of a rod to the other. Calculations happen by manipulating the positions of beads until the final bead pattern reveals the result.[130] Related aids include counting boards, which use tokens whose value depends on the area on the board in which they are placed,[131] and counting rods, which are arranged in horizontal and vertical patterns to represent different numbers.[132][f]
Sectors and slide rules are more refined calculating instruments that rely on geometric relationships between different scales to perform both basic and advanced arithmetic operations.[134][g] Printed tables were particularly relevant as an aid to look up the results of operations like logarithm and trigonometric functions.[136]
Others

There are many other types of arithmetic. Modular arithmetic operates on a finite set of numbers. If an operation would result in a number outside this finite set then the number is adjusted back into the set, similar to how the hands of clocks start at the beginning again after having completed one cycle. The number at which this adjustment happens is called the modulus. For example, a regular clock has a modulus of 12. In the case of adding 4 to 9, this means that the result is not 13 but 1. The same principle applies also to other operations, such as subtraction, multiplication, and division.[139]
Some forms of arithmetic deal with operations performed on mathematical objects other than numbers. Interval arithmetic describes operations on intervals.
Arithmetic systems can be classified based on the numeral system they rely on. For instance, decimal arithmetic describes arithmetic operations in the decimal system. Other examples are binary arithmetic, octal arithmetic, and hexadecimal arithmetic.[142]
Compound unit arithmetic describes arithmetic operations performed on magnitudes with compound units. It involves additional operations to govern the transformation between single unit and compound unit quantities. For example, the operation of reduction is used to transform the compound quantity 1 h 90 min into the single unit quantity 150 min.[143]
Non-Diophantine arithmetics are arithmetic systems that violate traditional arithmetic intuitions and include equations like and .[144] They can be employed to represent some real-world situations in modern physics and everyday life. For instance, the equation can be used to describe the observation that if one raindrop is added to another raindrop then they do not remain two separate entities but become one.[145]
Axiomatic foundations
The Dedekind–Peano axioms provide an axiomatization of the arithmetic of natural numbers. Their basic principles were first formulated by Richard Dedekind and later refined by Giuseppe Peano. They rely only on a small number of primitive mathematical concepts, such as 0, natural number, and successor.[h] The Peano axioms determine how these concepts are related to each other. All other arithmetic concepts can then be defined in terms of these primitive concepts.[147]
- 0 is a natural number.
- For every natural number, there is a successor, which is also a natural number.
- The successors of two different natural numbers are never identical.
- 0 is not the successor of a natural number.
- If a set contains 0 and every successor then it contains every natural number.[148][i]
Numbers greater than 0 are expressed by repeated application of the successor function . For example, is and is . Arithmetic operations can be defined as mechanisms that affect how the successor function is applied. For instance, to add to any number is the same as applying the successor function two times to this number.[150]
Various axiomatizations of arithmetic rely on set theory. They cover natural numbers but can also be extended to integers, rational numbers, and real numbers. Each natural number is represented by a unique set. 0 is usually defined as the empty set . Each subsequent number can be defined as the union of the previous number with the set containing the previous number. For example, , , and .[151] Integers can be defined as ordered pairs of natural numbers where the second number is subtracted from the first one. For instance, the pair (9, 0) represents the number 9 while the pair (0, 9) represents the number −9.[152] Rational numbers are defined as pairs of integers where the first number represents the numerator and the second number represents the denominator. For example, the pair (3, 7) represents the rational number .[153] One way to construct the real numbers relies on the concept of Dedekind cuts. According to this approach, each real number is represented by a partition of all rational numbers into two sets, one for all numbers below the represented real number and the other for the rest.[154] Arithmetic operations are defined as functions that perform various set-theoretic transformations on the sets representing the input numbers to arrive at the set representing the result.[155]
History

The earliest forms of arithmetic are sometimes traced back to counting and tally marks used to keep track of quantities. Some historians suggest that the Lebombo bone (dated about 43,000 years ago) and the Ishango bone (dated about 22,000 to 30,000 years ago) are the oldest arithmetic artifacts but this interpretation is disputed.[156] However, a basic sense of numbers may predate these findings and might even have existed before the development of language.[157]
It was not until the emergence of
Early civilizations primarily used numbers for concrete practical purposes, like commercial activities and tax records, but lacked an abstract concept of number itself.
The ancient Indians were the first to develop the concept of
Indian mathematicians also developed the

The first
In the 18th and 19th centuries, mathematicians such as
In various fields
Education
Arithmetic education forms part of
Later stages focus on a more abstract understanding and introduce the students to different types of numbers, such as negative numbers, fractions, real numbers, and complex numbers. They further cover more advanced numerical operations, like exponentiation, extraction of roots, and logarithm.[187] They also show how arithmetic operations are employed in other branches of mathematics, such as their application to describe geometrical shapes and the use of variables in algebra. Another aspect is to teach the students the use of algorithms and calculators to solve complex arithmetic problems.[188]
Psychology
The
One of the concepts studied by psychology is
Philosophy
The philosophy of arithmetic studies the fundamental concepts and principles underlying numbers and arithmetic operations. It explores the nature and ontological status of numbers, the relation of arithmetic to language and logic, and how it is possible to acquire arithmetic knowledge.[195]
According to
The traditionally dominant view in the
Others
Arithmetic is relevant to many fields. In
Arithmetic is intimately connected to many branches of mathematics that depend on numerical operations.
See also
References
Notes
- ^ Other symbols for the natural numbers include , , , and .[13]
- ^ Other symbols for the whole numbers include , , and .[15]
- ^ A repeating decimal is a decimal with an infinite number of repeating digits, like 0.111..., which expresses the rational number .
- ^ Some authors use a different terminology and refer to the first number as multiplicand and the second number as the multiplier.[51]
- ^ If the exponent is 0 then the result is 1, as in . The only exception is , which is not defined.[57]
- ^ Some systems of counting rods include different colors to represent both positive and negative numbers.[133]
- ^ Some computer scientists see slide rules as the first type of analog computer.[135]
- ^ The successor of a natural number is the number that comes after it. For instance, 4 is the successor of 3.
- ^ There are different versions of the exact formulation and number of axioms. For example, some formulations start with 1 instead of 0 in the first axiom.[149]
- ^ An influential argument for Platonism, first formulated by Willard Van Orman Quine and Hilary Putnam, states that numbers exist because they are indispensable to the best scientific theories.[197]
Citations
- ^
- ^
- Bukhshtab & Pechaev 2020
- Burgin 2022, pp. 57, 77
- Adamowicz 1994, p. 299
- ^
- Peirce 2015, p. 109
- Waite 2013, p. 42
- Smith 1958, p. 7
- ^
- Oliver 2005, p. 58
- Hofweber 2016, p. 153
- ^
- ^ Sophian 2017, p. 84
- ^
- Bukhshtab & Pechaev 2020
- Stevenson & Waite 2011, p. 70
- Romanowski 2008, pp. 303–304
- ^
- ^
- Wilson 2020, pp. 1–2
- Karatsuba 2020
- Campbell 2012, p. 33
- Robbins 2006, p. 1
- ^
- Duverney 2010, p. v
- Robbins 2006, p. 1
- ^
- Romanowski 2008, pp. 302–304
- Khattar 2010, pp. 1–2
- Nakov & Kolev 2013, pp. 270–271
- ^
- Nagel 2002, pp. 180–181
- Luderer, Nollau & Vetters 2013, p. 9
- Khattar 2010, pp. 1–2
- ^
- ^
- Romanowski 2008, p. 304
- Nagel 2002, pp. 180–181
- Hindry 2011, p. x
- Bukhshtab & Nechaev 2016
- ^
- Swanson 2021, p. 107
- Rossi 2011, p. 111
- ^
- Rajan 2022, p. 17
- Hafstrom 2013, p. 6
- ^
- Romanowski 2008, p. 304
- Nagel 2002, pp. 180–181
- Hindry 2011, p. x
- Hafstrom 2013, p. 95
- ^
- Orr 1995, p. 49
- Nelson 2019, p. xxxi
- ^
- Romanowski 2008, p. 304
- Nagel 2002, pp. 180–181
- Hindry 2011, p. x
- Hafstrom 2013, p. 123
- ^
- ^ Musser, Peterson & Burger 2013, p. 358
- ^
- Romanowski 2008, p. 304
- Nagel 2002, pp. 180–181
- Hindry 2011, p. x
- ^
- ^
- Romanowski 2008, p. 304
- Hindry 2011, p. x
- ^
- Hindry 2011, p. x
- Ward 2012, p. 55
- ^
- Ore 1948, pp. 1–2
- HC staff 2022
- HC staff 2022a
- ^
- Ore 1948, pp. 8–10
- Nakov & Kolev 2013, pp. 270–272
- ^
- Stakhov 2020, p. 73
- Nakov & Kolev 2013, pp. 271–272
- Jena 2021, pp. 17–18
- ^
- Nakov & Kolev 2013, pp. 271–272
- Jena 2021, pp. 17–18
- ^
- Ore 1948, pp. 8–10
- Mazumder & Ebong 2023, pp. 18–19
- Moncayo 2018, p. 25
- ^
- Ore 1948, p. 8
- Mazumder & Ebong 2023, p. 18
- ^ Ore 1948, p. 10
- ^
- Ore 1948, pp. 8–10
- Mazumder & Ebong 2023, pp. 18–19
- Stakhov 2020, pp. 77–78
- ^
- Romanowski 2008, p. 303
- Yan 2002, pp. 305–306
- ITL Education Solutions Limited 2011, p. 28
- Ore 1948, pp. 2–3
- Jena 2021, pp. 17–18
- ^
- Nagel 2002, p. 178
- Jena 2021, pp. 20–21
- Null & Lobur 2006, p. 40
- ^ Stakhov 2020, p. 74
- ^
- Nagel 2002, p. 179
- Husserl & Willard 2012, pp. XLIV–XLV
- O'Leary 2015, p. 190
- ^
- Rising et al. 2021, p. 110
- Bukhshtab & Pechaev 2020
- Nagel 2002, pp. 177, 179–180
- ^
- Bukhshtab & Pechaev 2020
- Burgin 2022, pp. 57, 77
- Adamowicz 1994, p. 299
- Nagel 2002, pp. 177, 179–180
- ^
- Khan & Graham 2018, pp. 9–10
- Smyth 1864, p. 55
- ^
- ^
- ^
- ^
- Musser, Peterson & Burger 2013, p. 87
- Romanowski 2008, p. 303
- ^ Burgin 2022, p. 25
- ^ Confrey 1994, p. 308
- ^
- ^
- ^
- Mazzola, Milmeister & Weissmann 2004, p. 66
- Romanowski 2008, p. 303
- Nagel 2002, pp. 179–180
- ^
- Romanowski 2008, p. 303
- Musser, Peterson & Burger 2013, pp. 101–102
- ^ Cavanagh 2017, p. 275
- ^
- ^
- Romanowski 2008, p. 303
- Wheater 2015, p. 19
- Wright, Ellemor-Collins & Tabor 2011, p. 136
- ^
- ^
- Mazzola, Milmeister & Weissmann 2004, p. 66
- Romanowski 2008, pp. 303–304
- Nagel 2002, pp. 179–180
- ^
- ^ Musser, Peterson & Burger 2013, p. 120
- ^
- Kay 2021, p. 118
- Klose 2014, p. 105
- ^
- Kay 2021, pp. 121–122
- Rodda & Little 2015, p. 7
- ^
- ^
- Sally & Sally (Jr.) 2012, p. 3
- Klose 2014, pp. 107–108
- ^
- Nagel 2002, pp. 180–181
- Gupta 2019, p. 3
- Vaccaro & Pepiciello 2022, pp. 9–12
- Liebler 2018, p. 36
- ^
- Romanowski 2008, p. 304
- Hindry 2011, p. x
- Hafstrom 2013, p. 95
- Brent & Zimmermann 2010, p. 1
- ^
- Kupferman 2015, pp. 45, 92
- Uspenskii & Semenov 2001, p. 113
- Geary 2006, p. 796
- ^
- Resnick & Ford 2012, p. 110
- Klein et al. 2010, pp. 67–68
- ^
- ^ Sperling & Stuart 1981, p. 7
- ^ Sperling & Stuart 1981, p. 8
- ^
- Ma 2020, pp. 35–36
- Sperling & Stuart 1981, p. 9
- ^ Mooney et al. 2014, p. 148
- ^
- Klein 2013, p. 249
- Muller et al. 2018, p. 539
- ^ Davis, Goulding & Suggate 2017, pp. 11–12
- ^ Haylock & Cockburn 2008, p. 49
- ^
- ^ Koepf 2021, p. 49
- ^ Goodstein 2014, p. 33
- ^
- ^
- Cuyt et al. 2008, p. 182
- Mahajan 2010, pp. 66–69
- Lang 2002, pp. 205–206
- ^
- Kay 2021, p. 57
- Cuyt et al. 2008, p. 182
- ^
- ^
- ^
- ^
- ^
- ^ Kubilyus 2018
- ^ Pomerance & Sárközy 1995, p. 969
- ^ Pomerance 2010
- ^
- ^
- ^
- ^
- ^
- ^
- Gellert et al. 2012, p. 30
- Romanowski 2008, p. 304
- Hindry 2011, p. x
- Hafstrom 2013, p. 123
- Cohen 2003, p. 37
- ^
- ^ Gellert et al. 2012, pp. 32–33
- ^ Gellert et al. 2012, p. 33
- ^ Klose 2014, p. 107
- ^
- Hoffman & Frankel 2018, pp. 161–162
- Lange 2010, pp. 248–249
- Klose 2014, pp. 105–107
- ^
- Cuyt et al. 2008, p. 182
- Mahajan 2010, pp. 66–69
- ^
- ^
- ^
- ^ Musser, Peterson & Burger 2013, p. 358
- ^
- ^
- Rossi 2011, p. 101
- Reitano 2010, p. 42
- Bronshtein et al. 2015, p. 2
- ^
- ^
- Wallis 2013, pp. 20–21
- Young 2010, pp. 996–997
- Young 2021, pp. 4–5
- ^ Koren 2018, p. 71
- ^ Drosg 2007, pp. 1–5
- ^ Bohacek 2009, pp. 18–19
- ^
- Higham 2002, pp. 3–5
- Bohacek 2009, pp. 8–19
- ^ Bohacek 2009, pp. 18–19
- ^ Bohacek 2009, pp. 23–30
- ^ Griffin 1935
- ^
- ^
- Vaccaro & Pepiciello 2022, pp. 9–11
- Chakraverty & Rout 2022, pp. 2–4, 39–40
- ^
- ^ Lustick 1997
- ^ Muller et al. 2009, pp. 13–16
- ^
- Koren 2018, p. 71
- Muller et al. 2009, pp. 13–16
- Swartzlander 2017, p. 11.19
- ^
- Stewart 2022, p. 26
- Meyer 2023, p. 234
- ^
- Muller et al. 2009, p. 54
- Brent & Zimmermann 2010, p. 79
- Cryer 2014, p. 450
- ^ Duffy 2018, p. 1225
- ^
- ^
- ^
- ^
- Dowker 2019, p. 114
- Berch, Geary & Koepke 2015, p. 124
- Otis 2024, pp. 15–19
- Geary 2006, p. 796
- ^
- Otis 2024, pp. 15–19
- Geary 2006, p. 796
- ^
- Ore 1948, p. 8
- Mazumder & Ebong 2023, p. 18
- ^
- Reynolds 2008, pp. 1–2
- Sternberg & Ben-Zeev 2012, pp. 95–96
- ^ Budd & Sangwin 2001, p. 209
- ^
- Knobloch, Komatsu & Liu 2013, p. 123
- Hodgkin 2013, p. 168
- Hart 2011, p. 69
- ^
- Hodgkin 2013, p. 168
- Hart 2011, p. 69
- ^
- Bruderer 2021, pp. 543–545, 906–907
- Klaf 2011, pp. 187–188
- ^
- Strathern 2012, p. 9
- Lang 2015, p. 160
- ^ Campbell-Kelly et al. 2007, p. 2
- ^
- Lockhart 2017, pp. 136, 140–146
- O'Regan 2012, pp. 24–25
- ^
- Khoury & Lamothe 2016, p. 2
- Lockhart 2017, pp. 147–150
- Burgin 2022, pp. 119
- ^
- Lerner & Lerner 2008, pp. 2807–2808
- Wallis 2011, pp. 303–304
- Kaiser & Granade 2021, pp. 283–284
- ^
- ^
- ^
- Shiva 2018, pp. 3, 14
- Gupta 2019, p. 3
- ^ Burgin 2022, pp. 92–93
- ^
- Burgin 2022, pp. xviii–xx, xxiv, 137–138
- Caprio, Aveni & Mukherjee 2022, pp. 763–764
- ^
- Burgin 2022, p. 144
- Caprio, Aveni & Mukherjee 2022, pp. 763–764
- Seaman, Rossler & Burgin 2023, p. 226
- ^
- Oliver 2005, p. 58
- Bukhshtab & Pechaev 2020
- Tiles 2009, p. 243
- ^
- Oliver 2005, p. 58
- Ferreiros 2013, p. 251
- Ongley & Carey 2013, pp. 26–27
- ^
- Oliver 2005, p. 58
- Ongley & Carey 2013, pp. 26–27
- Xu & Zhang 2022, p. 121
- ^ Taylor 2012, p. 8
- ^
- Ongley & Carey 2013, pp. 26–27
- Taylor 2012, p. 8
- ^
- Bagaria 2023, § 3. The Theory of Transfinite Ordinals and Cardinals
- Cunningham 2016, pp. 83–84, 108
- ^
- Hamilton & Landin 2018, p. 133
- Bagaria 2023, § 5. Set Theory as the Foundation of Mathematics
- ^
- Hamilton & Landin 2018, pp. 157–158
- Bagaria 2023, § 5. Set Theory as the Foundation of Mathematics
- ^
- Bagaria 2023, § 5. Set Theory as the Foundation of Mathematics
- Hamilton & Landin 2018, p. 252
- ^ Cunningham 2016, pp. 95–96
- ^
- Burgin 2022, pp. 2–3
- Ore 1948, pp. 1, 6, 8, 10
- Thiam & Rochon 2019, p. 164
- ^
- ^
- Burgin 2022, pp. 4–6
- Ang & Lam 2004, p. 170
- ^
- Burgin 2022, pp. 5–7, 9–11
- Ore 1948, pp. 10–15
- Nagel 2002, p. 178
- Hindry 2011, p. ix
- ^
- Burgin 2022, pp. 6–7, 9
- Ore 1948, pp. 16–18
- ITL Education Solutions Limited 2011, p. 28
- ^
- Ore 1948, p. 15
- Yadin 2016, p. 24
- ^
- Burgin 2022, pp. 4–5
- Brown 2010, p. 184
- ^
- Burgin 2022, p. 15
- Brown 2010, p. 184
- Romanowski 2008, p. 303
- Nagel 2002, p. 178
- ^
- Burgin 2022, p. 15
- Madden & Aubrey 2017, p. xvii
- ^
- Burgin 2022, p. 31
- Payne 2017, p. 202
- ^
- Burgin 2022, pp. 20–21
- Bloch 2011, p. 52
- ^
- Burgin 2022, p. 16
- Lützen 2023, p. 19
- ^
- Burgin 2022, pp. 29–31
- Klein 2013a, p. 12
- ^
- Burgin 2022, pp. 36–37
- Bradley 2006, pp. 82–83
- Conradie & Goranko 2015, p. 268
- ^
- Burgin 2022, pp. 35–36
- Cai 2023, p. 110
- ^
- Burgin 2022, pp. 37, 40
- Bradley 2006, pp. 82–83
- Conradie & Goranko 2015, p. 268
- ^
- ^
- ^
- Burgin 2022, pp. 13, 34
- Conradie & Goranko 2015, p. 268
- ^
- ^
- Burgin 2022, p. 56
- Oakes 2020, p. 330
- ^
- Burgin 2022, p. 55
- Wedell 2015, pp. 1235–1236
- ^
- Burgin 2022, p. 62
- Lützen 2023, p. 124
- ^ Vullo 2020, p. 140
- ^
- Cignoni & Cossu 2016, p. 103
- Koetsier 2018, p. 255
- Igarashi et al. 2014, pp. 87–89
- ^
- ^
- Burgin 2022, pp. 68–72
- Weil 2009, p. ix
- ^
- Burgin 2022, pp. 2, 88, 95–97
- Wang 1997, p. 334
- ^
- Burgin 2022, pp. 119, 124
- Curley 2011, pp. 5, 19
- Igarashi et al. 2014, p. 149
- ^
- NCTM Staff
- Musser, Peterson & Burger 2013, Curriculum Focal Points for Prekindergarten Through Grade 8 Mathematics, p. 44, p. 130
- Odom, Barbarin & Wasik 2009, p. 589
- ^
- ^
- NCTM Staff
- Musser, Peterson & Burger 2013, Curriculum Focal Points for Prekindergarten Through Grade 8 Mathematics, pp. 208, 304, 340, 362
- ^
- NCTM Staff
- Musser, Peterson & Burger 2013, Curriculum Focal Points for Prekindergarten Through Grade 8 Mathematics
- Carraher & Schliemann 2015, p. 197
- Ruthven 2012, pp. 435, 443–444
- ^
- De Cruz, Neth & Schlimm 2010, pp. 59–60
- Grice et al. 2023, Abstract
- ^ De Cruz, Neth & Schlimm 2010, pp. 60–62
- ^ De Cruz, Neth & Schlimm 2010, p. 63
- ^ Grice et al. 2023, Abstract
- ^
- ^
- ^
- Hofweber 2016, pp. 153–154, 162–163
- Oliver 2005, p. 58
- Sierpinska & Lerman 1996, p. 827
- ^
- Oliver 2005, p. 58
- Horsten 2023, § 3. Platonism
- ^ Colyvan 2023, Lead Section.
- ^ Horsten 2023, § 2.2 Intuitionism
- ^
- Horsten 2023, § 2.1 Logicism
- Hofweber 2016, pp. 174–175
- ^ Weir 2022, Lead Section
- ^
- Oliver 2005, p. 58
- Sierpinska & Lerman 1996, p. 830
- ^
- Oliver 2005, p. 58
- Sierpinska & Lerman 1996, pp. 827–876
- ^
- Horsten 2023, § 3.2 Naturalism and Indispensability
- Sierpinska & Lerman 1996, p. 830
- ^
- Lockhart 2017, pp. 1–2
- Bird 2021, p. 3
- Aubrey 1999, p. 49
- ^
- Omondi 2020, p. viii
- Paar & Pelzl 2009, p. 13
- ^
- ^
- Gallistel & Gelman 2005, pp. 559–560
- Ali Rahman et al. 2017, pp. 373–374
- Li & Schoenfeld 2019, Abstract, Introducation
- Asano 2013, pp. xiii–xv
Sources
- Achatz, Thomas; Anderson, John G. (2005). Technical Shop Mathematics. Industrial Press Inc. ISBN 978-0-8311-3086-2.
- Adamowicz, Zofia (1994). "The Power of Exponentiation in Arithmetic". In Joseph, Anthony; Mignot, Fulbert; Murat, François; Prum, Bernard; Rentschler, Rudolf (eds.). First European Congress of Mathematics: Paris, July 6-10, 1992 Volume I Invited Lectures (Part 1). Birkhäuser. pp. 299–320. ISBN 978-3-0348-9110-3.
- Adhami, Reza; Meenen, Peter M.; Meenen, Peter; Hite, Denis (2007). Fundamental Concepts in Electrical and Computer Engineering with Practical Design Problems. Universal-Publishers. ISBN 978-1-58112-971-7.
- Ali Rahman, Ernna Sukinnah; Shahrill, Masitah; Abbas, Nor Arifahwati; Tan, Abby (2017). "Developing Students' Mathematical Skills Involving Order of Operations". International Journal of Research in Education and Science: 373. doi:10.21890/ijres.327896 (inactive 12 December 2024).)
{{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link - Ang, Tian Se; Lam, Lay Yong (2004). Fleeting Footsteps: Tracing The Conception Of Arithmetic And Algebra In Ancient China (Revised ed.). World Scientific. ISBN 978-981-4483-60-5.
- Asano, Akihito (2013). An Introduction to Mathematics for Economics. Cambridge University Press. ISBN 978-1-107-00760-4.
- Askew, Mike (2010). "It Ain't (Just) What You Do: Effective Teachers of Numeracy". In Ian, Thompson (ed.). Issues In Teaching Numeracy In Primary Schools. McGraw-Hill Education (UK). ISBN 978-0-335-24153-8.
- Aubrey, Carol (1999). A Developmental Approach to Early Numeracy: Helping to Raise Children's Achievements and Deal with Difficulties in Learning. A&C Black. ISBN 978-1-4411-9164-9.
- Bagaria, Joan (2023). "Set Theory". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 19 November 2023.
- Barnes, Andrew J.; Rice, Thomase; Hanoch, Yaniv (2017). "Using Behavioral Economics to Improve People's Decisions About Purchasing Health Insurance". In Hanoch, Yaniv; Barnes, Andrew; Rice, Thomas (eds.). Behavioral Economics and Healthy Behaviors: Key Concepts and Current Research. Taylor & Francis. ISBN 978-1-317-26952-6.
- Berch, Daniel B.; Geary, David C.; Koepke, Kathleen Mann (2015). Development of Mathematical Cognition: Neural Substrates and Genetic Influences. Academic Press. ISBN 978-0-12-801909-2.
- Bird, John (2021). Bird's Engineering Mathematics. Taylor & Francis. ISBN 978-0-367-64378-2.
- Bloch, Ethan D. (2011). The Real Numbers and Real Analysis. Springer Science & Business Media. ISBN 978-0-387-72177-4.
- Bohacek, Peter (2009). "Introduction to Measurement". Teaching Quantitative Skills in the Geosciences. Carleton College Science Education Resource Center; American Association of Physics Teachers. Retrieved 2024-03-06.
- Booker, George; Bond, Denise; Sparrow, Len; Swan, Paul (2015). Teaching Primary Mathematics. Pearson Higher Education AU. ISBN 978-1-4860-0488-1.
- Bradley, Michael J. (2006). The Birth of Mathematics: Ancient Times To 1300. Infobase Publishing. ISBN 978-0-7910-9723-6.
- Brent, Richard P.; Zimmermann, Paul (2010). Modern Computer Arithmetic. Cambridge University Press. ISBN 978-1-139-49228-7.
- Bronshtein, I. N.; Semendyayev, K. A.; Musiol, Gerhard; Mühlig, Heiner (2015). Handbook of Mathematics. Springer. ISBN 978-3-662-46221-8.
- Brown, David (2010). "The Measurement of Time and Distance in the Heavens Above Mesopotamia, with Brief Reference Made to Other Ancient Astral Science". In Morley, Iain; Renfrew, Colin (eds.). The Archaeology of Measurement: Comprehending Heaven, Earth and Time in Ancient Societies. Cambridge University Press. ISBN 978-0-521-11990-0.
- Bruderer, Herbert (2021). Milestones in Analog and Digital Computing. Springer Nature. ISBN 978-3-030-40974-6.
- Budd, Christopher J.; Sangwin, Christopher (2001). Mathematics Galore!: Masterclasses, Workshops and Team Projects in Mathematics and Its Applications. OUP Oxford. ISBN 978-0-19-850770-3.
- Bukhshtab, A. A.; Nechaev, V. I. (2014). "Elementary Number Theory". Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
- Bukhshtab, A. A.; Nechaev, V. I. (2016). "Natural Number". Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
- Bukhshtab, A. A.; Pechaev, V. I. (2020). "Arithmetic". Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
- Burgin, Mark (2022). Trilogy Of Numbers And Arithmetic - Book 1: History Of Numbers And Arithmetic: An Information Perspective. World Scientific. ISBN 978-981-12-3685-3.
- Cafaro, Massimo; Epicoco, Italo; Pulimeno, Marco (2018). "Techniques for Designing Bioinformatics Algorithms". Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. Elsevier. ISBN 978-0-12-811432-2.
- Cai, Tianxin (2023). A Brief History of Mathematics: A Promenade Through the Civilizations of Our World. Springer Nature. ISBN 978-3-031-26841-0.
- Campbell, Stephen R. (2012). "Understanding Elementary Number Theory in Relation to Arithmetic and Algebra". In Zazkis, Rina; Campbell, Stephen R. (eds.). Number Theory in Mathematics Education: Perspectives and Prospects. Routledge. ISBN 978-1-136-50143-2.
- Campbell-Kelly, Martin; Croarken, Mary; Flood, Raymond; Robson, Eleanor (2007). The History of Mathematical Tables: From Sumer to Spreadsheets. OUP. ISBN 978-0-19-850841-0.
- Caprio, Michele; Aveni, Andrea; Mukherjee, Sayan (2022). "Concerning Three Classes of Non-Diophantine Arithmetics". Involve: A Journal of Mathematics. 15 (5): 763–774. S2CID 231847291.
- Carraher, David W.; Schliemann, Analucia D. (2015). "Powerful Ideas in Elementary School Mathematics". In ISBN 978-1-134-62664-9.
- Cavanagh, Joseph (2017). "6. Fixed-Point Multiplication". Computer Arithmetic and Verilog HDL Fundamentals. CRC Press. ISBN 978-1-351-83411-7.
- Chakraverty, Snehashish; Rout, Saudamini (2022). Affine Arithmetic Based Solution of Uncertain Static and Dynamic Problems. Springer Nature. ISBN 978-3-031-02424-5.
- Chemla, Karine; Keller, Agathe; Proust, Christine (2023). Cultures of Computation and Quantification in the Ancient World: Numbers, Measurements, and Operations in Documents from Mesopotamia, China and South Asia. Springer Nature. ISBN 978-3-030-98361-1.
- Cignoni, Gioanni A.; Cossu, Giovanni A. (2016). "The Global Virtual Museum of Information Science & Technology, a Project Idea". In Tatnall, Arthur; Leslie, Christopher (eds.). International Communities of Invention and Innovation: IFIP WG 9.7 International Conference on the History of Computing, HC 2016, Brooklyn, NY, USA, May 25-29, 2016, Revised Selected Papers. Springer. ISBN 978-3-319-49463-0.
- Cohen, Joel S. (2003). Computer Algebra and Symbolic Computation: Mathematical Methods. CRC Press. ISBN 978-1-4398-6370-1.
- Colyvan, Mark (2023). "Indispensability Arguments in the Philosophy of Mathematics". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 20 March 2024.
- Confrey, Jere (1994). "Splitting, Similarity, and Rate of Change: A New Approach to Multiplication and Exponential Functions". In Harel, Guershon; Confrey, Jere (eds.). The Development of Multiplicative Reasoning in the Learning of Mathematics. State University of New York Press. ISBN 978-1-4384-0580-3.
- Conradie, Willem; Goranko, Valentin (2015). Logic and Discrete Mathematics: A Concise Introduction. John Wiley & Sons. ISBN 978-1-118-76109-0.
- Cryer, C. W. (2014). A Math Primer for Engineers. IOS Press. ISBN 978-1-61499-299-8.
- Cunningham, Daniel W. (2016). Set Theory: A First Course. Cambridge University Press. ISBN 978-1-316-68204-3.
- Curley, Robert (2011). Computing: From the Abacus to the iPad. Britannica Educational Publishing. ISBN 978-1-61530-707-4.
- ISBN 978-1-4020-6949-9.
- Davis, Andrew; Goulding, Maria; Suggate, Jennifer (2017). Mathematical Knowledge for Primary Teachers. Taylor & Francis. ISBN 978-1-317-21901-9.
- De Cruz, Helen; Neth, Hansjörg; Schlimm, Dirk (2010). "The Cognitive Basis of Arithmetic". In Löwe, Benedikt; Müller, Thomas (eds.). PhiMSAMP: Philosophy of Mathematics : Sociological Aspsects and Mathematical Practice. College Publications. ISBN 978-1-904987-95-6.
- Dowker, Ann (2019). Individual Differences in Arithmetic: Implications for Psychology, Neuroscience and Education. Routledge. ISBN 978-1-317-62743-2.
- Dreeben-Irimia, Olga (2010). Patient Education in Rehabilitation. Jones & Bartlett Publishers. ISBN 978-1-4496-1775-2.
- Drosg, Manfred (2007). Dealing with Uncertainties. Springer. ISBN 978-3-540-29606-5.
- Duffy, Daniel J. (2018). Financial Instrument Pricing Using C++. John Wiley & Sons. ISBN 978-1-119-17048-8.
- Duverney, Daniel (2010). Number Theory: An Elementary Introduction Through Diophantine Problems. World Scientific. ISBN 978-981-4307-46-8.
- Ebby, Caroline B.; Hulbert, Elizabeth T.; Broadhead, Rachel M. (2020). A Focus on Addition and Subtraction: Bringing Mathematics Education Research to the Classroom. Routledge. ISBN 978-1-000-22087-2.
- Emerson, Jane; Babtie, Patricia (2014). The Dyscalculia Solution: Teaching Number Sense. Bloomsbury Publishing. ISBN 978-1-4729-2099-7.
- Eriksson, Kenneth; Estep, Donald; Johnson, Claes (2013). Applied Mathematics: Body and Soul: Volume 2: Integrals and Geometry in IRn. Springer Science & Business Media. ISBN 978-3-662-05798-8.
- Farmer, William M. (2023). Simple Type Theory: A Practical Logic for Expressing and Reasoning About Mathematical Ideas. Springer Nature. ISBN 978-3-031-21112-6.
- Ferreiros, Jose (2013). Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Birkhäuser. ISBN 978-3-0348-5049-0.
- Gallistel, C. R.; Gelman, R. (2005). "Mathematical Cognition". In Holyoak, K. J.; Morrison, R. G. (eds.). The Cambridge Handbook of Thinking and Reasoning. Cambridge University Press. ISBN 978-0-521-53101-6.
- Geary, David C. (2006). "Development of Mathematical Understanding". In Damon, William; Lerner, Richard M.; Kuhn, Deanna; Siegler, Robert S. (eds.). Handbook of Child Psychology, Cognition, Perception, and Language. John Wiley & Sons. ISBN 978-0-470-05054-5.
- Gellert, W.; Hellwich, M.; Kästner, H.; Küstner, H. (2012). The VNR Concise Encyclopedia of Mathematics. Springer Science & Business Media. ISBN 978-94-011-6982-0.
- Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan (2013). "Numerical Ability Predicts Mortgage Default". Proceedings of the National Academy of Sciences. 110 (28): 11267–11271. PMID 23798401.
- Goodstein, R. L. (2014). Fundamental Concepts of Mathematics. Elsevier. ISBN 978-1-4831-5405-3.
- Grice, Matt; Kemp, Simon; Morton, Nicola J.; Grace, Randolph C. (2023). "The Psychological Scaffolding of Arithmetic". Psychological Review. 131 (2): 494–522. S2CID 259251163.
- Grigorieva, Ellina (2018). Methods of Solving Number Theory Problems. Birkhäuser. ISBN 978-3-319-90915-8.
- Griffin, Carroll W. (1935). "Significant Figures". National Mathematics Magazine. 10 (1): 20–24. JSTOR 3028249.
- Gupta, Rajesh Kumar (2019). Numerical Methods: Fundamentals and Applications. Cambridge University Press. ISBN 978-1-108-68660-0.
- Hafstrom, John Edward (2013). Basic Concepts in Modern Mathematics. Courier Corporation. ISBN 978-0-486-31627-7.
- Hamilton, Norman T.; Landin, Joseph (2018). Set Theory: The Structure of Arithmetic. Courier Dover Publications. ISBN 978-0-486-83047-6.
- Hart, Roger (2011). The Chinese Roots of Linear Algebra. JHU Press. ISBN 978-0-8018-9958-4.
- Haylock, Derek; Cockburn, Anne D. (2008). Understanding Mathematics for Young Children: A Guide for Foundation Stage and Lower Primary Teachers. SAGE. ISBN 978-1-4462-0497-9.
- HC staff (2022). "Numeral". American Heritage Dictionary. HarperCollins. Retrieved 11 November 2023.
- HC staff (2022a). "Number System". American Heritage Dictionary. HarperCollins. Retrieved 11 November 2023.
- HC staff (2022b). "Arithmetic". American Heritage Dictionary. HarperCollins. Retrieved 19 October 2023.
- Higham, Nicholas (2002). Accuracy and Stability of Numerical Algorithms (PDF) (2nd ed.). SIAM. ISBN 978-0-89871-521-7.
- Hindry, Marc (2011). Arithmetics. Universitext. Springer. ISBN 978-1-4471-2130-5.
- Hodgkin, Luke (2013). A History of Mathematics: From Mesopotamia to Modernity. OUP Oxford. ISBN 978-0-19-166436-6.
- Hoffman, Joe D.; Frankel, Steven (2018). Numerical Methods for Engineers and Scientists. CRC Press. ISBN 978-1-4822-7060-0.
- Hofweber, Thomas (2016). "The Philosophy of Arithmetic". Ontology and the Ambitions of Metaphysics. Oxford University Press. ISBN 978-0-19-876983-5.
- Horsten, Leon (2023). "Philosophy of Mathematics". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 22 November 2023.
- Hua, Jueming; Feng, Lisheng (2020). Thirty Great Inventions of China: From Millet Agriculture to Artemisinin. Springer Nature. ISBN 978-981-15-6525-0.
- Husserl, Edmund; Willard, Dallas (2012). "Translator's Introduction". Philosophy of Arithmetic: Psychological and Logical Investigations with Supplementary Texts from 1887–1901. Springer Science & Business Media. ISBN 978-94-010-0060-4.
- Igarashi, Yoshihide; Altman, Tom; Funada, Mariko; Kamiyama, Barbara (2014). Computing: A Historical and Technical Perspective. CRC Press. ISBN 978-1-4822-2741-3.
- International Organization for Standardization (2019). ISO 80000-2: 2019 Quantities and units Part 2: Mathematics (PDF). International Organization for Standardization.
- ITL Education Solutions Limited (2011). Introduction to Computer Science. Pearson Education India. ISBN 978-81-317-6030-7.
- Jackson, Janna M. (2008). "Reading/Writing Connection". In Flippo, Rona F. (ed.). Handbook of College Reading and Study Strategy Research. Routledge. ISBN 978-1-135-70373-8.
- Jena, Sisir Kumar (2021). C Programming: Learn to Code. CRC Press. ISBN 978-1-000-46056-8.
- Kaiser, Sarah C.; Granade, Christopher (2021). Learn Quantum Computing with Python and Q#: A Hands-on Approach. Simon and Schuster. ISBN 978-1-61729-613-0.
- Karatsuba, A. A. (2014). "Analytic Number Theory". Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
- Karatsuba, A. A. (2020). "Number Theory". Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
- Kay, Anthony (2021). Number Systems: A Path into Rigorous Mathematics. CRC Press. ISBN 978-0-429-60776-9.
- Khan, Khalid; Graham, Tony Lee (2018). Engineering Mathematics with Applications to Fire Engineering. CRC Press. ISBN 978-1-351-59761-6.
- Khattar, Dinesh (2010). The Pearson Guide To Objective Arithmetic For Competitive Examinations, 3/E. Pearson Education India. ISBN 978-81-317-2673-0.
- Khoury, Joseph; Lamothe, Gilles (2016). Mathematics That Power Our World, The: How Is It Made?. World Scientific. ISBN 978-981-4730-86-0.
- Klaf, A. Albert (2011). Trigonometry Refresher. Courier Corporation. ISBN 978-0-486-15104-5.
- Klein, Elise; Moeller, Korbinian; Dressel, Katharina; Domahs, Frank; Wood, Guilherme; Willmes, Klaus; Nuerk, Hans-Christoph (2010). "To Carry or Not to Carry — Is This the Question? Disentangling the Carry Effect in Multi-digit Addition". Acta Psychologica. 135 (1): 67–76. PMID 20580340.
- Klein, Andreas (2013). Stream Ciphers. Springer Science & Business Media. ISBN 978-1-4471-5079-4.
- Klein, Jacob (2013a). Greek Mathematical Thought and the Origin of Algebra. Courier Corporation. ISBN 978-0-486-31981-0.
- Kleiner, Israel (2012). Excursions in the History of Mathematics. Springer Science & Business Media. ISBN 978-0-8176-8268-2.
- Klose, Orval M. (2014). The Number Systems and Operations of Arithmetic: An Explanation of the Fundamental Principles of Mathematics Which Underlie the Understanding and Use of Arithmetic, Designed for In-Service Training of Elementary School Teachers Candidates Service Training of Elementary School Teacher Candidates. Elsevier. ISBN 978-1-4831-3709-4.
- Knobloch, Eberhard; Komatsu, Hikosaburo; Liu, Dun (2013). Seki, Founder of Modern Mathematics in Japan: A Commemoration on His Tercentenary. Springer Science & Business Media. ISBN 978-4-431-54273-5.
- Koepf, Wolfram (2021). Computer Algebra: An Algorithm-Oriented Introduction. Springer Nature. ISBN 978-3-030-78017-3.
- Koetsier, Teun (2018). The Ascent of GIM, the Global Intelligent Machine: A History of Production and Information Machines. Springer. ISBN 978-3-319-96547-5.
- Koren, Israel (2018). Computer Arithmetic Algorithms. CRC Press. ISBN 978-1-4398-6371-8.
- Körner, T. W. (2019). Where Do Numbers Come From?. Cambridge University Press. ISBN 978-1-108-77594-6.
- Krenn, Stephan; Lorünser, Thomas (2023). An Introduction to Secret Sharing: A Systematic Overview and Guide for Protocol Selection. Springer Nature. ISBN 978-3-031-28161-7.
- Kubilyus, I. P. (2018). "Number Theory, Probabilistic Methods in". Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
- Kudryavtsev, L. D. (2020). "Real Number". Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
- Kupferman, Raz (2015). Elementary School Mathematics For Parents And Teachers - Volume 1. World Scientific Publishing Company. ISBN 978-981-4699-93-8.
- Křížek, Michal; Somer, Lawrence; Šolcová, Alena (2021). From Great Discoveries in Number Theory to Applications. Springer Nature. ISBN 978-3-030-83899-7.
- Lang, Serge (2002). "Taylor's Formula". Short Calculus: The Original Edition of "A First Course in Calculus". Undergraduate Texts in Mathematics. Springer. pp. 195–210. ISBN 978-1-4613-0077-9.
- Lang, Philippa (2015). Science: Antiquity and its Legacy. Bloomsbury Publishing. ISBN 978-0-85773-955-1.
- Lange, Kenneth (2010). Numerical Analysis for Statisticians. Springer Science & Business Media. ISBN 978-1-4419-5944-7.
- Laski, Elida V.; Jor’dan, Jamilah R.; Daoust, Carolyn; Murray, Angela K. (2015). "What Makes Mathematics Manipulatives Effective? Lessons From Cognitive Science and Montessori Education". SAGE Open. 5 (2). S2CID 11722953.
- Lerner, Brenda Wilmoth; Lerner, K. Lee, eds. (2008). "Modular Arithmetic". The Gale Encyclopedia of Science (4th ed.). Thompson Gale. ISBN 978-1-4144-2877-2.
- Li, Yeping; Schoenfeld, Alan H. (2019). "Problematizing Teaching and Learning Mathematics as 'Given' in STEM Education". International Journal of STEM Education. 6 (1). .
- Liebler, Robert A. (2018). Basic Matrix Algebra with Algorithms and Applications. CRC Press. ISBN 978-0-429-85287-9.
- Lockhart, Paul (2017). Arithmetic. The Belknap Press of Harvard University Press. ISBN 978-0-674-97223-0.
- Lozano-Robledo, Álvaro (2019). Number Theory and Geometry: An Introduction to Arithmetic Geometry. American Mathematical Soc. ISBN 978-1-4704-5016-8.
- Luderer, Bernd; Nollau, Volker; Vetters, Klaus (2013). Mathematical Formulas for Economists. Springer Science & Business Media. ISBN 978-3-662-12431-4.
- Lützen, Jesper (2023). A History of Mathematical Impossibility. Oxford University Press. ISBN 978-0-19-286739-1.
- Lustick, David (1997). "The Numbers Game: Playing up the importance of significant figures and scientific notation". The Science Teacher. 64 (5): 16–18. JSTOR 24152064.
- Ma, Liping (2020). Knowing and Teaching Elementary Mathematics: Teachers' Understanding of Fundamental Mathematics in China and the United States. Routledge. ISBN 978-1-000-02734-1.
- Madden, Daniel J.; Aubrey, Jason A. (2017). An Introduction to Proof Through Real Analysis. John Wiley & Sons. ISBN 978-1-119-31472-1.
- Mahajan, Sanjoy (2010). Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving. MIT Press. ISBN 978-0-262-26559-1.
- Marcus, Russell; McEvoy, Mark (2016). An Historical Introduction to the Philosophy of Mathematics: A Reader. Bloomsbury Publishing. ISBN 978-1-4725-3291-6.
- Mazumder, Pinaki; Ebong, Idongesit E. (2023). Lectures on Digital Design Principles. CRC Press. ISBN 978-1-000-92194-6.
- Mazzola, Guerino; Milmeister, Gérard; Weissmann, Jody (2004). Comprehensive Mathematics For Computer Scientists 1: Sets And Numbers, Graphs And Algebra, Logic And Machines, Linear Geometry. Springer Science & Business Media. ISBN 978-3-540-20835-8.
- Meyer, Carl D. (2023). Matrix Analysis and Applied Linear Algebra: Second Edition. SIAM. ISBN 978-1-61197-744-8.
- Monahan, John F. (2012). "2. Basic Computational Algorithms". In Gentle, James E.; Härdle, Wolfgang Karl; Mori, Yuichi (eds.). Handbook of Computational Statistics: Concepts and Methods. Springer Science & Business Media. ISBN 978-3-642-21551-3.
- Moncayo, Raul (2018). Lalangue, Sinthome, Jouissance, and Nomination: A Reading Companion and Commentary on Lacan's Seminar XXIII on the Sinthome. Routledge. ISBN 978-0-429-91554-3.
- Mooney, Claire; Briggs, Mary; Hansen, Alice; McCullouch, Judith; Fletcher, Mike (2014). Primary Mathematics: Teaching Theory and Practice. Learning Matters. ISBN 978-1-4739-0707-2.
- Moore, Ramon E.; Kearfott, R. Baker; Cloud, Michael J. (2009). Introduction to Interval Analysis. SIAM. ISBN 978-0-89871-669-6.
- Muller, Jean-Michel; Brisebarre, Nicolas; Dinechin, Florent de; Jeannerod, Claude-Pierre; Lefèvre, Vincent; Melquiond, Guillaume; ISBN 978-0-8176-4705-6.
- Muller, Jean-Michel; Brunie, Nicolas; Dinechin, Florent de; Jeannerod, Claude-Pierre; Joldes, Mioara; Lefèvre, Vincent; Melquiond, Guillaume; ISBN 978-3-319-76526-6.
- Musser, Gary L.; Peterson, Blake E.; Burger, William F. (2013). Mathematics for Elementary Teachers: A Contemporary Approach. John Wiley & Sons. ISBN 978-1-118-48700-6.
- MW staff (2023). "Definition of Arithmetic". www.merriam-webster.com. Retrieved 19 October 2023.
- Nagel, Rob (2002). U-X-L Encyclopedia of Science. U-X-L. ISBN 978-0-7876-5440-5.
- Nagel, Ernest; Newman, James Roy (2008). Godel's Proof. NYU Press. ISBN 978-0-8147-5837-3.
- Nakov, Svetlin; Kolev, Veselin (2013). Fundamentals of Computer Programming with C#: The Bulgarian C# Book. Faber Publishing. ISBN 978-954-400-773-7.
- NCTM Staff. "Number and Operations". www.nctm.org. National Council of Teachers of Mathematics. Retrieved 21 November 2023.
- Nelson, Gerald (2019). English: An Essential Grammar. Routledge. ISBN 978-1-351-12273-3.
- Null, Linda; Lobur, Julia (2006). The Essentials of Computer Organization and Architecture. Jones & Bartlett Learning. ISBN 978-0-7637-3769-6.
- Nurnberger-Haag, Julie (2017). "Borrow, Trade, Regroup, or Unpack? Revealing How Instructional Metaphors Portray Base-Ten Number". In Jao, Limin; Radakovic, Nenad (eds.). Transdisciplinarity in Mathematics Education: Blurring Disciplinary Boundaries. Springer. ISBN 978-3-319-63624-5.
- O'Leary, Michael L. (2015). A First Course in Mathematical Logic and Set Theory. John Wiley & Sons. ISBN 978-0-470-90588-3.
- O'Regan, Gerard (2012). A Brief History of Computing. Springer Science & Business Media. ISBN 978-1-4471-2359-0.
- Oakes, Elizabeth (2020). Encyclopedia of World Scientists, Updated Edition. Infobase Publishing. ISBN 978-1-4381-9545-2.
- Odom, Samuel L.; Barbarin, Oscar A.; Wasik, Barbara Hanna (2009). "Applying Lessons from Developmental Science to Early Education". In Barbarin, Oscar A.; Wasik, Barbara Hanna (eds.). Handbook of Child Development and Early Education: Research to Practice. Guilford Press. ISBN 978-1-60623-302-3.
- Oliver, Alexander D. (2005). "Arithmetic, Foundations of". In Honderich, Ted (ed.). The Oxford Companion to Philosophy. Oxford University Press. ISBN 978-0-19-926479-7.
- Omondi, Amos R. (2020). Cryptography Arithmetic: Algorithms and Hardware Architectures. Springer Nature. ISBN 978-3-030-34142-8.
- Ongley, John; Carey, Rosalind (2013). Russell: A Guide for the Perplexed. Bloomsbury Publishing. ISBN 978-1-4411-9123-6.
- Ore, Oystein (1948). Number Theory and Its History. McGraw-Hill. )
- Orr, David B. (1995). Fundamentals of Applied Statistics and Surveys. CRC Press. ISBN 978-0-412-98821-9.
- Otis, Jessica Marie (2024). By the Numbers: Numeracy, Religion, and the Quantitative Transformation of Early Modern England. Oxford University Press. ISBN 978-0-19-760877-7.
- Paar, Christof; Pelzl, Jan (2009). Understanding Cryptography: A Textbook for Students and Practitioners. Springer Science & Business Media. ISBN 978-3-642-04101-3.
- Page, Robert L. (2003). "Number Theory, Elementary". Encyclopedia of Physical Science and Technology (Third ed.). Academic Press. ISBN 978-0-12-227410-7.
- Payne, Andrew (2017). The Teleology of Action in Plato's Republic. Oxford University Press. ISBN 978-0-19-879902-3.
- Peirce, Charles S. (2015). Arithmetic. Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-086970-5.
- Pharr, Matt; Jakob, Wenzel; Humphreys, Greg (2023). Physically Based Rendering: From Theory to Implementation (4 ed.). MIT Press. ISBN 978-0-262-37403-3.
- ISBN 978-1-4008-3039-8.
- Pomerance, C.; Sárközy, A. (1995). "Combinatorial Number Theory". In Graham, R. L. (ed.). Handbook of Combinatorics. Elsevier. ISBN 978-0-08-093384-9.
- Ponticorvo, Michela; Schmbri, Massimiliano; Miglino, Orazio (2019). "How to Improve Spatial and Numerical Cognition with a Game-Based and Technology-Enhanced Learning Approach". In Vicente, José Manuel Ferrández; Álvarez-Sánchez, José Ramón; López, Félix de la Paz; Moreo, Javier Toledo; Adeli, Hojjat (eds.). Understanding the Brain Function and Emotions: 8th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part I. Springer. ISBN 978-3-030-19591-5.
- Prata, Stephen (2002). C Primer Plus. Sams Publishing. ISBN 978-0-672-32222-8.
- Quintero, Ana Helvia; Rosario, Hector (2016). Math Makes Sense!: A Constructivist Approach To The Teaching And Learning Of Mathematics. World Scientific. ISBN 978-1-78326-866-5.
- ISBN 978-0-262-36243-6.
- Reilly, Norman R. (2009). Introduction to Applied Algebraic Systems. Oxford University Press. ISBN 978-0-19-970992-2.
- Reitano, Robert R. (2010). Introduction to Quantitative Finance: A Math Tool Kit. MIT Press. ISBN 978-0-262-01369-7.
- Resnick, L. B.; Ford, W. W. (2012). Psychology of Mathematics for Instruction. Routledge. ISBN 978-1-136-55759-0.
- Reynolds, Barbara E. (2008). "Abacus". In Selin, Helaine (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer Science & Business Media. ISBN 978-1-4020-4559-2.
- Riesel, Hans (2012). Prime Numbers and Computer Methods for Factorization. Springer Science & Business Media. ISBN 978-1-4612-0251-6.
- Rising, Gerald R.; Matthews, James R.; Schoaff, Eileen; Matthew, Judith (2021). About Mathematics. Linus Learning. ISBN 978-1-60797-892-3.
- Robbins, Neville (2006). Beginning Number Theory. Jones & Bartlett Learning. ISBN 978-0-7637-3768-9.
- Rodda, Harvey J. E.; Little, Max A. (2015). Understanding Mathematical and Statistical Techniques in Hydrology: An Examples-based Approach. John Wiley & Sons. ISBN 978-1-119-07659-9.
- Roe, John; deForest, Russ; Jamshidi, Sara (2018). Mathematics for Sustainability. Springer. ISBN 978-3-319-76660-7.
- Romanowski, Perry (2008). "Arithmetic". In Lerner, Brenda Wilmoth; Lerner, K. Lee (eds.). The Gale Encyclopedia of Science (4th ed.). Thompson Gale. ISBN 978-1-4144-2877-2.
- ISBN 978-1-4994-7092-5.
- Rossi, Richard J. (2011). Theorems, Corollaries, Lemmas, and Methods of Proof. John Wiley & Sons. ISBN 978-1-118-03057-8.
- Ruthven, Kenneth (2012). "12. Calculators in the Mathematics Curriculum: The Scope of Personal Computational Technology". In Bishop, Alan; Clements, M. A. (Ken); Keitel-Kreidt, Christine; Kilpatrick, Jeremy; Laborde, Colette (eds.). International Handbook of Mathematics Education. Springer Science & Business Media. ISBN 978-94-009-1465-0.
- Sally, Judith D.; Sally (Jr.), Paul J. (2012). Integers, Fractions, and Arithmetic: A Guide for Teachers. American Mathematical Soc. ISBN 978-0-8218-8798-1.
- Seaman, William; Rossler, Otto E.; Burgin, Mark (2023). Chaos, Information, And The Future Of Physics: The Seaman-rossler Dialogue With Information Perspectives By Burgin And Seaman. World Scientific. ISBN 978-981-12-7138-0.
- Shiva, Sajjan G. (2018). Introduction to Logic Design. CRC Press. ISBN 978-1-351-98983-1.
- Sierpinska, Anna; Lerman, Stephen (1996). "Epistemologies of Mathematics and of Mathematics Education". In Alan J. Bishop; Ken Clements; Christine Keitel; Jeremy Kilpatrick; Colette Laborde (eds.). International Handbook of Mathematics Education: Part 1. Kluwer International Handbooks of Education, vol. 4. Springer Netherlands. pp. 827–876. ISBN 978-94-009-1465-0.
- Smith, David E. (1958). History of Mathematics. Courier Corporation. )
- Smyth, William (1864). Elementary Algebra: For Schools and Academies. Bailey and Noyes. OCLC 3901163143.
- Sophian, Catherine (2017). The Origins of Mathematical Knowledge in Childhood. Routledge. ISBN 978-1-351-54175-6.
- Sperling, Abraham; Stuart, Monroe (1981). Mathematics. Elsevier Science. ISBN 978-0-7506-0405-5.
- Stakhov, Alexey (2020). Mathematics Of Harmony As A New Interdisciplinary Direction And 'Golden' Paradigm Of Modern Science - Volume 2: Algorithmic Measurement Theory, Fibonacci And Golden Arithmetic's And Ternary Mirror-symmetrical Arithmetic. World Scientific. ISBN 978-981-12-1348-9.
- Sternberg, Robert J.; Ben-Zeev, Talia (2012). The Nature of Mathematical Thinking. Routledge. ISBN 978-1-136-48750-7.
- Stevenson, Angus; Waite, Maurice (2011). Concise Oxford English Dictionary: Luxury Edition. OUP Oxford. ISBN 978-0-19-960111-0.
- Stewart, David E. (2022). Numerical Analysis: A Graduate Course. Springer Nature. ISBN 978-3-031-08121-7.
- Strathern, Paul (2012). Turing And The Computer. Random House. ISBN 978-1-4481-0656-1.
- Swanson, Irena (2021). Introduction To Analysis With Complex Numbers. World Scientific. ISBN 978-981-12-2587-1.
- Swartzlander, Earl E. (2017). "High-Speed Computer Arithmetic". In Oklobdzija, Vojin G. (ed.). Digital Design and Fabrication. CRC Press. ISBN 978-0-8493-8604-6.
- Tarasov, Vasily (2008). Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Elsevier. ISBN 978-0-08-055971-1.
- Taylor, Joseph L. (2012). Foundations of Analysis. American Mathematical Soc. ISBN 978-0-8218-8984-8.
- Thiam, Thierno; Rochon, Gilbert (2019). Sustainability, Emerging Technologies, and Pan-Africanism. Springer Nature. ISBN 978-3-030-22180-5.
- Tiles, Mary (2009). "A Kantian Perspective on the Philosophy of Mathematics". In Irvine, Andrew D. (ed.). Philosophy of Mathematics. Elsevier. ISBN 978-0-08-093058-9.
- Uspenskii, V. A.; Semenov, A. L. (2001). "Solvable and Unsolvable Algorithmic Problems". In Tabachnikov, Serge (ed.). Kvant Selecta: Combinatorics, I: Combinatorics, I. American Mathematical Soc. ISBN 978-0-8218-2171-8.
- Vaccaro, Alfredo; Pepiciello, Antonio (2022). Affine Arithmetic-Based Methods for Uncertain Power System Analysis. Elsevier. ISBN 978-0-323-90503-9.
- Verschaffel, Lieven; Torbeyns, Joke; De Smedt, Bert (2011). "Mental Arithmetic". In Seel, Norbert M. (ed.). Encyclopedia of the Sciences of Learning. Springer Science & Business Media. ISBN 978-1-4419-1427-9.
- Victoria Department of Education Staff (2023). "Numeracy for All Learners". www.education.vic.gov.au. Retrieved 22 November 2023.
- Vinogradov, A. I. (2019). "Algebraic Number Theory". Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
- Vullo, Vincenzo (2020). Gears: Volume 3: A Concise History. Springer Nature. ISBN 978-3-030-40164-1.
- Waite, Maurice (2013). Pocket Oxford English Dictionary. OUP Oxford. ISBN 978-0-19-966615-7.
- Wallis, W. D. (2011). A Beginner's Guide to Discrete Mathematics. Springer Science & Business Media. ISBN 978-0-8176-8286-6.
- Wallis, W. D. (2013). A Beginner's Guide to Discrete Mathematics. Springer Science & Business Media. ISBN 978-1-4757-3826-1.
- Wang, Hao (1997). A Logical Journey: From Gödel to Philosophy. MIT Press. ISBN 978-0-262-26125-8.
- Ward, J. P. (2012). Quaternions and Cayley Numbers: Algebra and Applications. Springer Science & Business Media. ISBN 978-94-011-5768-1.
- Wedell, Moritz (2015). "Numbers". In Classen, Albrecht (ed.). Handbook of Medieval Culture. Volume 2. Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-037763-7.
- Weil, André (2009). Number Theory: An Approach Through History From Hammurapi to Legendre. Springer Science & Business Media. ISBN 978-0-8176-4571-7.
- Weir, Alan (2022). "Formalism in the Philosophy of Mathematics". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 22 November 2023.
- Wheater, Carolyn (2015). Algebra I. Dorling Kindersley Limited. ISBN 978-0-241-88779-0.
- Wilson, Robin (2020). Number Theory: A Very Short Introduction. Oxford University Press. ISBN 978-0-19-879809-5.
- Wright, Robert J.; Ellemor-Collins, David; Tabor, Pamela D. (2011). Developing Number Knowledge: Assessment, Teaching and Intervention with 7-11 Year Olds. SAGE. ISBN 978-1-4462-8927-3.
- Xu, Zhiwei; Zhang, Jialin (2022). Computational Thinking: A Perspective on Computer Science. Springer Nature. ISBN 978-981-16-3848-0.
- Yadin, Aharon (2016). Computer Systems Architecture. CRC Press. ISBN 978-1-315-35592-4.
- Yan, Song Y. (2002). Number Theory for Computing. Springer Science & Business Media. ISBN 978-3-642-07710-4.
- Yan, Song Y. (2013a). Computational Number Theory and Modern Cryptography. John Wiley & Sons. ISBN 978-1-118-18858-3.
- ISBN 978-0-471-75684-2.
- Young, Cynthia Y. (2021). Algebra and Trigonometry. John Wiley & Sons. ISBN 978-1-119-77830-1.
- Zhang, G. (2012). Logic of Domains. Springer Science & Business Media. ISBN 978-1-4612-0445-9.