Arsole

Source: Wikipedia, the free encyclopedia.
Arsole
Structural formula of arsole with an implicit hydrogen
Structural formula of arsole with an implicit hydrogen
Ball-and-stick model of the arsole molecule
Ball-and-stick model of the arsole molecule
Names
Preferred IUPAC name
1H-Arsole
Other names
Arsenole
Arsacyclopentadiene
Identifiers
3D model (
JSmol
)
ChEBI
ChemSpider
UNII
  • InChI=1S/C4H5As/c1-2-4-5-3-1/h1-5H checkY
    Key: NXHAKHHKDBVHPV-UHFFFAOYSA-N checkY
  • InChI=1/C4H5As/c1-2-4-5-3-1/h1-5H
    Key: NXHAKHHKDBVHPV-UHFFFAOYAK
  • [AsH]1C=CC=C1
Properties
C4H4AsH
Molar mass 128.00 g mol−1
Related compounds
Related compounds
Pyrrole, phosphole, bismole, stibole
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Arsole, also called arsenole

substituted analogs called arsoles exist. Arsoles and more complex arsole derivatives have similar structure and chemical properties to those of phosphole derivatives. When arsole is fused to a benzene ring, this molecule is called arsindole, or benzarsole.[3]

Nomenclature

Arsole belongs to the series of heterocyclic pnictogen compounds. The naming of cyclic

IUPAC, as summarized below:[5]

Ring size
Unsaturated ring
Saturated ring
3 Arsirene Arsirane
4 Arsete Arsetane
5 Arsole Arsolane
6
Arsinine
Arsinane
7 Arsepine Arsepane
8 Arsocine Arsocane
9 Arsonine Arsonane
10 Arsecine Arsecane

Because of its similarity to the English slang word "

arsehole" (in common use outside North America), the name "arsole" has been considered a target of fun, a "silly name",[6][7] and one of several chemical compounds with an unusual name. However, this "silly name" coincidence has also stimulated detailed scientific studies.[2][failed verification][dubiousdiscuss
]

Properties

Calculated geometry and inversion barrier energy E for some C4H4MH molecules[8]
M d(M-C),
Å
d(M-H), Å α(C-M-C), ° E, kJ/mol
N 1.37 1.01 110 0
P 1.81 1.425 90.5 67
As 1.94 1.53 86 125
Sb 2.14 1.725 80.5 160
Bi 2.24 1.82 78 220

Arsole itself has not been isolated experimentally yet, but the molecular geometry and electronic configuration of arsole have been studied theoretically. Calculations also addressed properties of simple arsole derivatives, where hydrogen atoms are substituted by other atoms or small hydrocarbon groups, and there are experimental reports on chemical properties of more complex arsole derivatives. The situation is similar for other C4H4MH metalloles where M = P, As, Sb and Bi.

Planarity

Calculations suggest that whereas pyrrole (C4H4NH) molecule is planar, phosphole (C4H4PH) and heavier metalloles are not, and their

quantum tunneling between the two configurations.[8]

Aromaticity

delocalization and resonance of its ring electrons. It is closely related to planarity in that the more planar the molecule the stronger its aromaticity.[10] Aromaticity of arsole and its derivatives has been debated for years both from experimental and theoretical points of view. A 2005 review combined with quantum chemical calculations concluded that arsole itself is "moderately" aromatic as its ring current is 40% that of pyrrole, which is known to be aromatic. However, comparable ring current was calculated for cyclopentadiene, which has long been regarded as non-aromatic.[2] Other reports suggest that the aromaticity (and planarity) can vary between arsole derivatives.[9]

Chemical properties (arsole derivatives)

Chemical properties of arsole derivatives have been studied experimentally; they are similar to those of

phenyl groups yields yellow needles of crystalline pentaphenylarsole, which has a melting point of 215 °C. This complex can be prepared, at a yield of 50–93%, by reacting 1,4-diiodo-1,2,3,4-tetraphenylbutadiene[12] or 1,4-dilithio-1,2,3,4-tetraphenylbutadiene with phenylarsenous dichloride (C6H5AsCl2) in ether
.

Substituting in this reaction

isooctane at 150 °C to yield a solid organoarsenic compound with the formula C34H25As,Fe(CO)3.[11] Reacting pentaphenylarsole with metallic lithium or potassium yields 1,2,3-triphenyl naphthalene.[13]

Reaction of phenylarsenous dichloride with linear diphenyls results in 1,2,5-triphenylarsole (see below), a solid with a melting point of about 170 °C.

anions upon treatment with alkali metals.[15]

See also

References

This page is based on the copyrighted Wikipedia article: Arsole. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy