Astronomical interferometer

Source: Wikipedia, the free encyclopedia.

An astronomical interferometer or telescope array is a set of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas and galaxies by means of interferometry. The advantage of this technique is that it can theoretically produce images with the angular resolution of a huge telescope with an aperture equal to the separation, called baseline, between the component telescopes. The main drawback is that it does not collect as much light as the complete instrument's mirror. Thus it is mainly useful for fine resolution of more luminous astronomical objects, such as close binary stars. Another drawback is that the maximum angular size of a detectable emission source is limited by the minimum gap between detectors in the collector array.[1]

Interferometry is most widely used in

optical astronomy it is more difficult to combine the light from separate telescopes, because the light must be kept coherent within a fraction of a wavelength over long optical paths, requiring very precise optics. Practical infrared and optical astronomical interferometers have only recently been developed, and are at the cutting edge of astronomical research. At optical wavelengths, aperture synthesis allows the atmospheric seeing resolution limit to be overcome, allowing the angular resolution to reach the diffraction limit
of the optics.

ESO's VLT interferometer took the first detailed image of a disc around a young star.[2]

Astronomical interferometers can produce higher resolution astronomical images than any other type of telescope. At radio wavelengths, image resolutions of a few micro-

arcseconds
have been obtained, and image resolutions of a fractional milliarcsecond have been achieved at visible and infrared wavelengths.

One simple layout of an astronomical interferometer is a parabolic arrangement of mirror pieces, giving a partially complete reflecting telescope but with a "sparse" or "dilute" aperture. In fact, the parabolic arrangement of the mirrors is not important, as long as the optical path lengths from the astronomical object to the beam combiner (focus) are the same as would be given by the complete mirror case. Instead, most existing arrays use a planar geometry, and Labeyrie's hypertelescope will use a spherical geometry.

History

Hooker Telescope
, 1920.

One of the first uses of optical interferometry was applied by the

radio interferometry was used to perform the first high resolution radio astronomy observations. For the next three decades astronomical interferometry research was dominated by research at radio wavelengths, leading to the development of large instruments such as the Very Large Array and the Atacama Large Millimeter Array
.

Optical/infrared interferometry was extended to measurements using separated telescopes by Johnson, Betz and Townes (1974) in the infrared and by

.

ESO/NAOJ/NRAO ALMA
construction site.

In the 1980s the aperture synthesis interferometric imaging technique was extended to visible light and infrared astronomy by the

Modern astronomical interferometry

Astronomical interferometry is principally conducted using Michelson (and sometimes other type) interferometers.

NPOI, and CHARA
.

Navy Precision Optical Interferometer (NPOI)
, a 437 ma baselined optical/near-infrared, 6-beam Michelson Interferometer at 2163 m elevation on Anderson Mesa in Northern Arizona, USA. Four additional 1.8-meter telescopes are being installed starting from 2013.
auxiliary telescopes, and combined using the technique of interferometry.
This image shows one of a series of sophisticated optical and mechanical systems called star separators for the Very Large Telescope Interferometer (VLTI).[13]

Current projects will use interferometers to search for

Darwin) or through direct imaging (as proposed for Labeyrie
's Hypertelescope).

Engineers at the European Southern Observatory

ESO
designed the Very Large Telescope VLT so that it can also be used as an interferometer. Along with the four 8.2-metre (320 in) unit telescopes, four mobile 1.8-metre auxiliary telescopes (ATs) were included in the overall VLT concept to form the Very Large Telescope Interferometer (VLTI). The ATs can move between 30 different stations, and at present, the telescopes can form groups of two or three for interferometry.

When using interferometry, a complex system of mirrors brings the light from the different telescopes to the astronomical instruments where it is combined and processed. This is technically demanding as the light paths must be kept equal to within 1/1000 mm (the same order as the wavelength of light) over distances of a few hundred metres. For the Unit Telescopes, this gives an equivalent mirror diameter of up to 130 metres (430 ft), and when combining the auxiliary telescopes, equivalent mirror diameters of up to 200 metres (660 ft) can be achieved. This is up to 25 times better than the resolution of a single VLT unit telescope.

The VLTI gives astronomers the ability to study celestial objects in unprecedented detail. It is possible to see details on the surfaces of stars and even to study the environment close to a black hole. With a spatial resolution of 4 milliarcseconds, the VLTI has allowed astronomers to obtain one of the sharpest images ever of a star. This is equivalent to resolving the head of a screw at a distance of 300 km (190 mi).

Notable 1990s results included the

young stellar objects
.

Two of the Atacama Large Millimeter/submillimeter array (ALMA) 12-metre antennas gaze at the sky at the observatory's Array Operations Site (AOS), high on the Chajnantor plateau at an altitude of 5000 metres in the Chilean Andes.

High on the Chajnantor plateau in the Chilean Andes, the European Southern Observatory (ESO), together with its international partners, is building ALMA, which will gather radiation from some of the coldest objects in the Universe. ALMA will be a single telescope of a new design, composed initially of 66 high-precision antennas and operating at wavelengths of 0.3 to 9.6 mm. Its main 12-meter array will have fifty antennas, 12 metres in diameter, acting together as a single telescope – an interferometer. An additional compact array of four 12-metre and twelve 7-meter antennas will complement this. The antennas can be spread across the desert plateau over distances from 150 metres to 16 kilometres, which will give ALMA a powerful variable "zoom". It will be able to probe the Universe at millimetre and submillimetre wavelengths with unprecedented sensitivity and resolution, with a resolution up to ten times greater than the Hubble Space Telescope, and complementing images made with the VLT interferometer.

active galaxies
.

For details of individual instruments, see the list of astronomical interferometers at visible and infrared wavelengths.

A simple two-element optical interferometer. Light from two small
lenses
) is combined using beam splitters at detectors 1, 2, 3 and 4. The elements creating a 1/4-wave delay in the light allow the phase and amplitude of the interference visibility to be measured, which give information about the shape of the light source.
A single large telescope with an
aperture mask over it (labelled Mask), only allowing light through two small holes. The optical paths to detectors 1, 2, 3 and 4 are the same as in the left-hand figure, so this setup will give identical results. By moving the holes in the aperture mask and taking repeated measurements, images can be created using aperture synthesis
which would have the same quality as would have been given by the right-hand telescope without the aperture mask. In an analogous way, the same image quality can be achieved by moving the small telescopes around in the left-hand figure — this is the basis of aperture synthesis, using widely separated small telescopes to simulate a giant telescope.

At radio wavelengths, interferometers such as the

IRAM Plateau de Bure facility. The Atacama Large Millimeter Array
has been fully operational since March 2013.

Max Tegmark and Matias Zaldarriaga have proposed the Fast Fourier Transform Telescope which would rely on extensive computer power rather than standard lenses and mirrors.[14] If Moore's law continues, such designs may become practical and cheap in a few years.

Progressing quantum computing might eventually allow more extensive use of interferometry, as newer proposals suggest.[15]

See also

List

References

  1. ^ "Maximum angular size sensitivity of aninterferometer" (PDF). Archived from the original (PDF) on 2016-10-14. Retrieved 2015-02-05.
  2. ^ "ESO's VLT Takes First Detailed Image of Disc around Young Star". ESO Announcements. Retrieved 17 November 2011.
  3. S2CID 21969744
    .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. ]
  12. .
  13. ^ "New Hardware to Take Interferometry to the Next Level". ESO. Retrieved 3 April 2013.
  14. ^ Chown, Marcus (September 24, 2008). "'All-seeing' telescope could take us back in time". NewScientist. Retrieved January 31, 2020.
  15. ^ Ananthaswamy, Anil (2021-04-19). "Quantum Astronomy Could Create Telescopes Hundreds of Kilometers Wide". Scientific American. Retrieved 2022-09-26.

Further reading

External links