Connection Machine
![]() | This article includes a list of general references, but it lacks sufficient corresponding inline citations. (April 2015) |
Connection Machine | ||
---|---|---|
FLOPS
| ||
The Connection Machine (CM) is a member of a series of massively parallel supercomputers sold by Thinking Machines Corporation. The idea for the Connection Machine grew out of doctoral research on alternatives to the traditional von Neumann architecture of computers by Danny Hillis at Massachusetts Institute of Technology (MIT) in the early 1980s. Starting with CM-1, the machines were intended originally for applications in artificial intelligence (AI) and symbolic processing, but later versions found greater success in the field of computational science.
Origin of idea
Danny Hillis and Sheryl Handler founded Thinking Machines Corporation (TMC) in Waltham, Massachusetts, in 1983, moving in 1984 to Cambridge, MA. At TMC, Hillis assembled a team to develop what would become the CM-1 Connection Machine, a design for a massively parallel hypercube-based arrangement of thousands of microprocessors, springing from his PhD thesis work at MIT in Electrical Engineering and Computer Science (1985).[3] The dissertation won the ACM Distinguished Dissertation prize in 1985,[4] and was presented as a monograph that overviewed the philosophy, architecture, and software for the first Connection Machine, including information on its data routing between central processing unit (CPU) nodes, its memory handling, and the programming language Lisp applied in the parallel machine.[3][5] Very early concepts contemplated just over a million processors, each connected in a 20-dimensional hypercube,[6] which was later scaled down.
Designs
Thinking Machines Connection Machine models | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | ||||
Custom architecture | RISC-based (SPARC) | |||||||||||||
Entry | — | CM-2a | — | |||||||||||
Mainstream | — | CM-1 | CM-2 | — | CM-5 | CM-5E | ||||||||
Hi-end | — | CM-200 | ||||||||||||
expansions | ||||||||||||||
Storage | — | DataVault | — |

Each CM-1 microprocessor has its own 4
To improve its commercial viability, TMC launched the CM-2 in 1987, adding
Due to its origins in AI research, the software for the CM-1/2/200 single-bit processor was influenced by the Lisp programming language and a version of Common Lisp, *Lisp (spoken: Star-Lisp), was implemented on the CM-1. Other early languages included Karl Sims' IK and Cliff Lasser's URDU. Much system utility software for the CM-1/2 was written in *Lisp. Many applications for the CM-2, however, were written in C*, a data-parallel superset of ANSI C.
With the CM-5, announced in 1991, TMC switched from the CM-2's hypercubic architecture of simple processors to a new and different multiple instruction, multiple data (
Visual design

Connection Machines were noted for their striking visual design. The CM-1 and CM-2 design teams were led by Tamiko Thiel.[10] The physical form of the CM-1, CM-2, and CM-200 chassis was a cube-of-cubes, referencing the machine's internal 12-dimensional hypercube network, with the red light-emitting diodes (LEDs), by default indicating the processor status, visible through the doors of each cube.
By default, when a processor is executing an instruction, its LED is on. In a SIMD program, the goal is to have as many processors as possible working the program at the same time – indicated by having all LEDs being steady on. Those unfamiliar with the use of the LEDs wanted to see the LEDs blink – or even spell out messages to visitors. The result is that finished programs often have superfluous operations to blink the LEDs.
The CM-5, in plan view, had a staircase-like shape, and also had large panels of red blinking LEDs. Prominent sculptor-architect Maya Lin contributed to the CM-5 design.[11]
Surviving examples
Permanent exhibits
- The very first CM-1 is on permanent display in the Computer History Museum, Mountain View, California, which also has two other CM-1s and CM-5.[12]
- There is a decommissioned CM-1 or CM-2 on display in the main building of the Karlsruhe Institute of Technology computer science department. Students have converted it into a Bluetooth-controlled LED matrix display which can be used to play games or display art.[13]
- A CM-2 with flashing red LED arrays and its accompanying DataVault storage unit are on permanent display at the Mimms Museum of Technology and Art in Roswell, Georgia.[14]
- There is a CM-200 on permanent display at École Polytechnique Fédérale de Lausanne in Switzerland, part of the exhibition space of Musée Bolo.[15]
Past exhibits, Museum collections
- The Museum of Modern Art in New York City displayed a CM-2 in 2018. They continue to house the machine in their collection.[16]
- A CM-2 is in the collection of the Swedish National Museum of Science and Technology (Tekniska Museet) in Stockholm, Sweden.[1]
- Several parts of a CM-1 are in the collection of the Smithsonian Institution National Museum of American History, though it may not be a complete example.[17][18]
- The better source needed] It is possible this machine is now in private hands, though it is not listed among the objects auctioned by Christie's.[20]
Private collections
- As of 2007, a preserved CM-2a was owned by the Corestore, a type of online-only museum.[21]
References in popular culture
A CM-5 was featured in the film Jurassic Park in the control room for the island (instead of a Cray X-MP supercomputer as in the novel). Two banks, one bank of 4 Units and a single off to the right of the set could be seen in the control room.[22]
The computer mainframes in Fallout 3 were inspired heavily by the CM-5. [23]
Cyberpunk 2077 features numerous CM-1/CM-2 style units in various portions of the game.
The b-side to Clock DVA's 1989 single "The Hacker" is titled "The Connection Machine" in reference to the CM-1.
See also
- Blinkenlights
- Brewster Kahle – lead engineer on the Connection Machine projects
- Danny Hillis – inventor of the Connection Machine
- David E. Shaw – creator of NON-VON machine, which preceded the Connection machine slightly
- FROSTBURG – a CM-5 used by the NSA
- Goodyear MPP
- ICL DAP
- MasPar
- Parallel computing
References
- ^ a b c "Swedish National Museum of Science and Technology, Parallelldator". Retrieved 25 October 2024.
- ^ "The Connection Machines CM-1 and CM-2". tamikothiel.com. Retrieved 24 October 2024.
- ^ ISBN 0262081571.
- ^ "William Daniel Hillis - Award Winner". ACM Awards. Retrieved 30 April 2015.
- ^ Kahle, Brewster; Hillis, W. Daniel (1989). The Connection Machine Model CM-1 Architecture (Technical report). Cambridge, MA: Thinking Machines Corp. p. 7 pp. Retrieved 25 April 2015.
- doi:10.1063/1.881196. Retrieved 30 June 2021.
- doi:10.1063/1.881196. Archived from the originalon 28 July 2009.
- ^ Hillis 1989a - Text of Daniel Hillis' Physics Today article on Feynman and the Connection machine; also a video of Hillis *How I met Feynman *Feynman's last days.
- ^ "November 1993". www.top500.org. Retrieved 16 January 2015.
- JSTOR 1511650.
- ^ "Bloodless Beige Boxes: The Story of an Artist and a Thinking Machine". IT History Society. 2 September 2014. Retrieved 16 January 2015.
- ^ "Computer History Museum, Catalog Search Connection Machine supercomputer". Retrieved 16 August 2019.
- ^ "The Connection Machine LED matrix - Technology for Pervasive Computing". Retrieved 15 February 2025.
- ^ "Computer Museum of America". Retrieved 16 August 2019.
- ^ "File:Thinking Machines CM200-IMG 7294 (bright).jpg".
Thinking Machines Connection Machine CM-200 supercomputer. On display at the Musée Bolo, EPFL, Lausanne.
- ^ "Museum of Modern Art, CM-2 Supercomputer". Retrieved 25 October 2024.
- ^ "National Museum of American History - CM-1 Rack". Retrieved 25 October 2024.
- ^ "National Museum of American History - Search Collections". Retrieved 25 October 2024.
- ^ "Tamiko Thiel: The Connection Machine CM-1/CM-2, Artificial intelligence parallel supercomputer design". Retrieved 25 October 2024.
- ^ "Pushing Boundaries: Ingenuity from the Paul G. Allen Collection". Retrieved 25 October 2024.
- ^ "Corestore collection: Connection Machine CM-2a". Retrieved 25 October 2024.
- ^ Movie Quotes Database
- ^ Linus Tech Tips
Further reading
- Hillis, D. 1982 "New Computer Architectures and Their Relationship to Physics or Why CS is No Good", Int J. Theoretical Physics 21 (3/4) 255-262.
- Lewis W. Tucker, George G. Robertson, "Architecture and Applications of the Connection Machine," Computer, vol. 21, no. 8, pp. 26–38, August, 1988.
- Arthur Trew and Greg Wilson (eds.) (1991). Past, Present, Parallel: A Survey of Available Parallel Computing Systems. New York: Springer-Verlag. ISBN 0-387-19664-1
- Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and Robert Zak. "The Network Architecture of the Connection Machine CM-5". Proceedings of the fourth annual ACM Symposium on Parallel Algorithms and Architectures. 1992.
- W. Daniel Hillis and Lewis W. Tucker. The CM-5 Connection Machine: A Scalable Supercomputer. In Communications of the ACM, Vol. 36, No. 11 (November 1993).
External links
- Gallery of CM-5 images
- CM-5 Manuals Archived 2006-09-02 at the Wayback Machine
- Tamiko Thiel on the visual design of the CM-1/2/200
- Feynman and the Connection Machine
- Liquid Selves, an animated short film rendered on a CM-2