FMR1

Source: Wikipedia, the free encyclopedia.
FMR1
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001185075
NM_001185076
NM_001185081
NM_001185082
NM_002024

NM_001290424
NM_008031
NM_001374719

RefSeq (protein)

NP_001172004
NP_001172005
NP_001172010
NP_001172011
NP_002015

n/a

Location (UCSC)Chr X: 147.91 – 147.95 MbChr X: 67.72 – 67.76 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Location of FMR1 on the X chromosome.

FMR1 (Fragile X Messenger Ribonucleoprotein 1) is a

autism, Parkinson's disease, developmental delays and other cognitive deficits.[7] The FMR1 premutation is associated with a wide spectrum of clinical phenotypes that affect more than two million people worldwide.[8]

Function

Synaptic plasticity

FMRP has a diverse array of functions throughout different areas of the neuron; however these functions have not been fully characterized. FMRP has been suggested to play roles in nucleocytoplasmic shuttling of

protein synthesis.[9] Studies of Fragile X syndrome have significantly aided in the understanding of the functionality of FMRP through the observed effects of FMRP loss on neurons. A mouse model of Fragile X Messenger Ribonucleoprotein implicated the involvement of FMRP in synaptic plasticity.[10] Synaptic plasticity requires the production of new proteins in response to activation of synaptic receptors
. It is the production of proteins in response to stimulation which is hypothesized to allow for the permanent physical changes and altered synaptic connections that are linked with the processes of learning and memory.

Group 1 metabotropic glutamate receptor (mGluR) signaling has been implicated in playing an important role in FMRP-dependent synaptic plasticity. Post-synaptic mGluR stimulation results in the up-regulation of protein synthesis through a second messenger system.[11] A role for mGluR in synaptic plasticity is further evidenced by the observation of dendritic spine elongation following mGluR stimulation.[12] Furthermore, mGluR activation results in the synthesis of FMRP near synapses. The produced FMRP associates with polyribosomal complexes after mGluR stimulation, proposing the involvement of Fragile X Messenger Ribonucleoprotein in the process of translation. This further advocates a role for FMRP in synaptic protein synthesis and the growth of synaptic connections.[13] The loss of FMRP results in an abnormal dendritic spine phenotype. Specifically, deletion of the FMR1 gene in a sample of mice resulted in an increase in spine synapse number.[14]

Role in translation

The proposed mechanism of FMRP's effect upon synaptic plasticity are through its role as a negative regulator of translation. FMRP is an RNA-binding protein which associates with

polyribosomes.[13][15] The RNA-binding abilities of FMRP are dependent upon its KH domains and RGG boxes. The KH domain is a conserved motif which characterizes many RNA-binding proteins. Mutagenesis of this domain resulted in impaired FMRP binding to RNA.[16]

FMRP has been shown to inhibit translation of mRNA. Mutation of the FMRP protein resulted in the inability to repress translation as opposed to the wild-type counterpart which was able to do so.[17] As previously mentioned, mGluR stimulation is associated with increased FMRP protein levels. In addition, mGluR stimulation results in increased levels of FMRP target mRNAs. A study found basal levels of proteins encoded by these target mRNAs to be significantly elevated and improperly regulated in FMRP deficient mice.[18]

FMRP translation repression acts by inhibiting the initiation of translation. FMRP directly binds

PSD-95
and GluR1/2 mRNAs. Importantly, these FMRP-binding mRNAs play significant roles in neuronal plasticity.

FMRP translational control has been shown to be regulated by mGluR signaling. mGluR stimulation may result in the transportation of mRNA complexes to synapses for local protein synthesis. FMRP granules have been shown to localize with

ubiquitination, and proteolysis occur rapidly in response to mGluR signaling, suggesting an extremely dynamic role of the translational regulator.[18]

Gene expression

The FMR1 gene is located on the

SMRT sequencing.[24] This is an example of a Trinucleotide repeat disorder. Trinucleotide repeat expansion is likely a consequence of strand slippage either during DNA repair or DNA replication.[25]

FMRP is a chromatin-binding protein that functions in the DNA damage response.[26][27] FMRP occupies sites on meiotic chromosomes and regulates the dynamics of the DNA damage response machinery during spermatogenesis.[26]

The FMR1 gene can be found on the long (q) arm of the X chromosome at position 27.3, from base pair 146,699,054 to base pair 146,738,156

Related conditions

Fragile X syndrome

Almost all cases of fragile X syndrome are caused by expansion of the CGG trinucleotide repeat in the FMR1 gene. In these cases, CGG is abnormally repeated from 200 to more than 1,000 times. As a result, this part of the FMR1 gene is methylated, which silences the gene (it is turned off and does not make any protein). Without adequate FMR1, severe learning disabilities or intellectual disabilities can develop, along with physical abnormalities seen in fragile X syndrome.

Fewer than 1% of all cases of fragile X syndrome are caused by mutations that delete part or all of the FMR1 gene, or change a base pair, leading to a change in one of the amino acids in the gene. These mutations disrupt the 3-dimensional shape of FMRP or prevent the protein from being synthesized, leading to the signs and symptoms of fragile X syndrome.

A CGG sequence in the FMR1 gene that is repeated between 55 and 200 times is described as a premutation. Although most individuals with the premutation are intellectually normal, some of these individuals have mild versions of the physical features seen in fragile X syndrome (such as prominent ears) and may experience mental health problems such as anxiety or depression.

Fragile X-associated tremor/ataxia syndrome

Premutations are associated with an increased risk of

memory loss, loss of sensation in the lower extremities (peripheral neuropathy
) and mental and behavioral changes. The disorder usually develops late in life.

Premature ovarian aging

The FMR1 gene plays a very important role in ovarian function, independent from cognitive/neurological effects. Minor expansions of CGG repeats that do not cause

premature ovarian aging, also called occult primary ovarian insufficiency, a condition in which women prematurely deplete their ovarian function.[28][29][30]

Polycystic ovarian syndrome

A very specific sub-genotype of FMR1 has been found to be associated with

polycystic ovarian syndrome
(PCOS). The gene expression, called heterozygous-normal/low may cause PCOS-like excessive follicle activity and hyperactive ovarian function when women are younger.

Interactions

FMR1 has been shown to

interact
with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000102081Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000000838Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. S2CID 21463845
    .
  6. .
  7. ^ "Fragile X Messenger Ribonucleoprotein 1" The Human Gene Compendium
  8. S2CID 16002209
    .
  9. ^ .
  10. .
  11. .
  12. .
  13. ^ .
  14. .
  15. .
  16. .
  17. .
  18. ^ .
  19. ^ .
  20. .
  21. .
  22. .
  23. American College of Medical Genetics
    . 2000-10-02. Retrieved 2013-03-29.
  24. .
  25. .
  26. ^ .
  27. .
  28. .
  29. .
  30. .
  31. ^ .
  32. ^ .
  33. ^ .
  34. ^ .
  35. .
  36. .

Further reading

External links

This page is based on the copyrighted Wikipedia article: FMR1. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy