GJ 1214

Source: Wikipedia, the free encyclopedia.
GJ 1214 / Orkaria
ESO
/L. Calçada
Observation data
Epoch J2000      Equinox J2000
Constellation Ophiuchus[1]
Right ascension 17h 15m 18.93399s[2]
Declination +04° 57′ 50.0666″[2]
Apparent magnitude (V) 14.71±0.03[3]
Characteristics
Spectral type M4.5[4]
Apparent magnitude (B) 16.40[5]
Apparent magnitude (R) 14.394 ± 0.17[5]
Apparent magnitude (I) 11.52 ± 0.03[3]
Apparent magnitude (J) 9.750±0.024[6]
Apparent magnitude (H) 9.094±0.024[6]
Apparent magnitude (K) 8.782±0.020[6]
B−V color index 1.73[7]
V−R color index 0.9
R−I color index 2.7
Variable type
planetary transit[8]
Distance
47.75 ± 0.05 ly
(14.64 ± 0.01 pc)
Absolute magnitude (MV)14.10
Details
Gyr
TIC 467929202, 2MASS J17151894+0457496[5]
Database references
Exoplanet Archive
data
ARICNSdata
Extrasolar Planets
Encyclopaedia
data

GJ 1214 (sometimes Gliese 1214) is a dim M4.5[4] red dwarf star in the constellation Ophiuchus with an apparent magnitude of 14.7.[3] It is located at a distance of 47.8 light-years (14.7 parsecs) from Earth.[12] GJ 1214 hosts one known exoplanet.[8]

Nomenclature

The designation GJ 1214 comes from the Gliese Catalogue of Nearby Stars. This star was first included in the second edition of the catalogue, published in 1979 by Gliese and Jahreiß, hence the GJ prefix usually used for this star.[13]

In August 2022, this planetary system was included among 20 systems to be named by the third NameExoWorlds project.[14] The approved names, proposed by a team from Kenya, were announced in June 2023. GJ 1214 is named Orkaria and its planet is named Enaiposha, after the Maa words for red ochre and for a large body of water, alluding to the color of the star and likely composition of the planet.[15]

Properties

GJ 1214 is about one-fifth the radius of the Sun[16] with a surface temperature estimated to be 3,110 K (2,840 °C; 5,140 °F).[9] Its luminosity is only 0.35% that of the Sun.[9]

The estimate for the stellar radius is 15% larger than predicted by theoretical models.

flares and is a source of X-ray emission with a base luminosity of 7.4×1025 erg s−1. The temperature of the stellar corona is estimated to be about 3.5×106 K.[11]

In 2021–2022, the star is suspected to be in the low-activity phase of its magnetic starspot cycle.[17]

Planetary system

In mid-December 2009, a team of Harvard-Smithsonian astronomers announced the discovery of a companion

extrasolar planet, GJ 1214 b, potentially composed largely of water and having the mass and diameter of a super-Earth,[8][16] though now more often described as a mini-Neptune based on its composition.[18]

Discovered by the

No transit-time variations have yet been found for this transit. As of 2012, "the given data does not allow us to conclude that there is a [second] planet in the mass range 0.1–5 Earth-masses and the period range 0.76–1.23 or 1.91–3.18 days."[19] The X-ray flux from the host star is estimated to have stripped 2–5.6 ME from the planet over the lifetime of the system.[11]

The GJ 1214 planetary system[20]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b / Enaiposha 8.17±0.43 M🜨 0.01490±0.00026 1.580404571(42)[21] <0.063 88.7±0.1° 2.742+0.050
−0.053
 R🜨

See also

References

  1. ^ . Gaia DR3 record for this source at VizieR.
  2. ^
    S2CID 118428858
    .
  3. ^ .
  4. ^ a b c "GJ 1214". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2019-01-15.
  5. ^
  6. ^ .
  7. ^ . 40.
  8. .
  9. ^ . L11.
  10. ^ Anglada-Escudé, Guillem; Rojas-Ayala, Bárbara; Boss, Alan P.; Weinberger, Alycia J.; Lloyd, James P. (2012). "GJ 1214b revised. Improved trigonometric parallax, stellar parameters, orbital solution, and bulk properties for the super-Earth GJ 1214b". Astronomy & Astrophysics. 551: A48.
    S2CID 55117987
    .
  11. ^ "Dictionary of Nomenclature of Celestial Objects". Centre de données astronomiques de Strasbourg. Retrieved 4 May 2023.
  12. ^ "List of ExoWorlds 2022". nameexoworlds.iau.org. IAU. 8 August 2022. Retrieved 27 August 2022.
  13. ^ "2022 Approved Names". nameexoworlds.iau.org. IAU. Retrieved 7 June 2023.
  14. ^ a b David A. Aguilar (2009-12-16). "Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology". Harvard-Smithsonian Center for Astrophysics. Retrieved March 21, 2024.
  15. ^ Brennan, Pat (10 May 2023). "NASA's Webb Takes Closest Look Yet at Mysterious Planet". NASA. Retrieved 10 May 2023.
  16. S2CID 53418632
    .

External links