Wolf 1061

Source: Wikipedia, the free encyclopedia.

Wolf 1061

Location of Wolf 1061 in the constellation Ophiuchus
Observation data
Epoch J2000      Equinox J2000
Constellation Ophiuchus
Right ascension 16h 30m 18.0584s[1]
Declination −12° 39′ 45.325″[1]
Apparent magnitude (V) 10.07[2] (10.05 - 10.10)[3]
Characteristics
Spectral type M3.5V[4]
U−B color index +1.20[5]
B−V color index +1.57[2]
Variable type BY Draconis[3]
Distance
14.050 ± 0.002 ly
(4.3078 ± 0.0005 pc)
Absolute magnitude (MV)11.87[4]
Details
dex
Rotation95 d[4]
LHS 419, Vys
164
Database references
SIMBADdata

Wolf 1061 (also known as

The star

A visual band light curve for V2306 Ophiuchi, plotted from ASAS-SN data[10]

Wolf 1061 was first cataloged in 1919 by German astronomer Max Wolf when he published a list of dim stars that had high proper motions. Wolf 1061's name originates from this list.[11] A seven years study found no evidence of photometric transits and confirms the radial velocity signals are not due to stellar activity. The habitable zone estimate for the system lies between approximately 0.1 and 0.2 AU from the star.

Planetary system

Artist's impression of exoplanets orbiting a red dwarf[12]

In December 2015, a team of astronomers from the

HARPS spectrograph at La Silla Observatory in Chile. The team used archive radial velocity measurements of the star's spectrum in the HARPS data and, along with 8 years of photometry from the All Sky Automated Survey, discovered two definite planets with orbital periods of around 4.9 and 17.9 days and a very likely third with a period of 67.3 days.[9]

All three planets have masses low enough that they are likely to be

inner planets of the Solar System although their actual sizes and densities are currently unknown. However, this information could be determined if the planets happen to transit in front of Wolf 1061 when viewed from Earth. Because all three planets orbit close to the star and have short orbital periods, there is a chance that this will occur. The University of New South Wales team estimated the chances of a transit at around 14% for planet b, 6% for planet c, and 3% for planet d.[9]

One of the planets,

Proxima b, Ross 128 b, and Luyten b.[13][14] The next planet out, Wolf 1061 d, could be marginally habitable depending on its atmosphere's composition as it orbits just beyond the habitable zone.[9]

In March 2017, another team of astronomers re-analyzed the system using the HARPS spectrograph. They found planets b and c to be quite similar to their originally reported parameters, but found that planet d was more massive and in a larger, more eccentric orbit. The team was also able to find updated parameters for the host star. Their results showed that Wolf 1061 c is slightly smaller, yet closer to the inner edge of the habitable zone.[4]

The Wolf 1061 planetary system[9][4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b
≥1.91 ± 0.25 M🜨 0.0375 ± 0.0012 4.8869 ± 0.0005 0.15 +0.13
−0.10
1.2 (estimated) R🜨
c
≥3.41 +0.43
−0.41
 M🜨
0.0890 ± 0.003 17.8719 ± 0.0059 0.11 +0.10
−0.07
1.45 (estimated) R🜨
d
≥7.7 +1.12
−1.06
 M🜨
0.470 ± 0.016 217.21 +0.55
−0.52
0.55 +0.08
−0.09
2.2 (estimated) R🜨

See also

References

External links