Hadamard space

In geometry, an Hadamard space, named after Jacques Hadamard, is a non-linear generalization of a Hilbert space. In the literature they are also equivalently defined as complete CAT(0) spaces.
A Hadamard space is defined to be a nonempty[1] complete metric space such that, given any points and there exists a point such that for every point
The point is then the midpoint of and
In a Hilbert space, the above inequality is equality (with ), and in general an Hadamard space is said to be flat if the above inequality is equality. A flat Hadamard space is isomorphic to a closed convex subset of a Hilbert space. In particular, a
The geometry of Hadamard spaces resembles that of Hilbert spaces, making it a natural setting for the study of
The basic result for a non-positively curved manifold is the
Examples of Hadamard spaces are
Applications of Hadamard spaces are not restricted to geometry. In 1998, Dmitri Burago and Serge Ferleger[3] used CAT(0) geometry to solve a problem in dynamical billiards: in a gas of hard balls, is there a uniform bound on the number of collisions? The solution begins by constructing a configuration space for the dynamical system, obtained by joining together copies of corresponding billiard table, which turns out to be a Hadamard space.
See also
- CAT(k) space – Type of metric space in mathematics
- Hadamard manifold – complete, simply-connected Riemannian manifold with nonpositive sectional curvature everywhere
References
- ^ The assumption on "nonempty" has meaning: a fixed point theorem often states the set of fixed point is an Hadamard space. The main content of such an assertion is that the set is nonempty.
- ^ A Course in Metric Geometry, p. 334.
- ^ Burago D., Ferleger S. Uniform estimates on the number of collisions in semi-dispersing billiards. Ann. of Math. 147 (1998), 695-708
- Bridson, Martin R.; Haefliger, André (1999), Metric spaces of non-positive curvature, Springer
- Papadopoulos, Athanase (2014), Metric spaces, convexity and non-positive curvature, IRMA Lectures in Mathematics and Theoretical Physics, vol. 6 (Second ed.), ISBN 978-3-03719-132-3
- Burago, Dmitri; Yuri Burago, and Sergei Ivanov. A Course in Metric Geometry. American Mathematical Society. (1984)
- Jacob Lurie: Notes on the Theory of Hadamard Spaces
- Alexander S., Kapovich V., Petrunin A. Notes on Alexandrov Geometry