Limnoperdon

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Limnoperdon
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Agaricales
Family: Limnoperdaceae
G.A.Escobar (1976)[1]
Genus: Limnoperdon
G.A.Escobar (1976)
Type species
Limnoperdon incarnatum
G.A.Escobar (1976)[2]

Limnoperdon is a fungal

pure culture, suggest that a thin strand of mycelium tethers the ball above water while it matures. Fruit bodies start out as a tuft of hyphae, then become cup-shaped, and eventually enclose around a single chamber that contains reddish spores. Initially discovered in a marsh in the state of Washington
, the fungus has since been collected in Japan, South Africa, and Canada.

Taxonomy, classification and phylogeny

The family, genus and species were first described in a 1976 publication by graduate students Gustavo Escobar and Dennis McCabe, and undergraduate Craig Harpel who, in the fall of 1974, found the fungus as part of "a class project to find and isolate phycomycetes".[2] The holotype is located in the University of Washington Mycological Herbarium. An isotype (duplicate of the holotype specimen) is located in the Herbarium of the University of El Salvador in San Salvador.[2]

Cladogram indicating phylogeny of L. incarnatum and some related species in the Pluteoid clade, based on ribosomal DNA sequences; after Matheny et al., 2006:[3]

Limnoperdon incarnatum was originally thought to be associated with the

pluteoid clade of the Agaricales, a grouping that includes the families Pluteaceae, Amanitaceae, and Pleurotaceae;[3] other studies that used comparisons of ribosomal DNA sequences placed Limnoperdon near the gilled genera Melanoleuca or Resupinatus, of the family Tricholomataceae.[5][6][7]

A 2007 field study that used molecular techniques to survey aquatic fungal

genetic affinity to Limnoperdon incarnatum, which suggests that a closely related species may also be common in streams.[8]

Description

The genus description is similar to the family description, but further specifies that the fruit bodies float, are sometimes embedded in a loose subiculum (a woolly or net-like growth of hyphae), and that the spores are reddish.[2] The fungus has been described as an "aquatic puffball",[9] although a later review considered "floating puffball" to be a more apt descriptor.[10]

The fruit bodies of L. incarnatum are tiny, oval to roughly spherical, and measure 35–1250 by 200–450 

hydrophobic, a feature that helps keep water off the growing hymenium during its development,[11] and gives the fruit body buoyancy.[9]

The

sterigmata with a central constriction. The basidia measure 20–90 (typically 25–55) μm long by 8–10 μm thick. Reddish in mass, the spores are obovate (egg-shaped, with the broad extremity located away from the base), smooth, thick-walled, and measure 11–16 (typically 12–15) by 7–10 μm. They have a beaked pedicel that is 2–4 by 2–5 μm, and a basal germ pore.[2]

Habitat and distribution

The species was originally discovered floating in

rice paddy fields.[13] Later surveys uncovered the fungus in several localities in South Africa[14] and in freshwater ponds in Canada.[4][15]

Development

Escobar grew cultures of the fungus by placing fresh fruit bodies on agar containing growth medium with an extract of horse dung. The tips of the hyphae were used to obtain axenic cultures; the fungus can grow on a variety of media commonly used to grow fungi in the laboratory. Depending on the composition of the growth media, fruit bodies were formed as early as eight days after initiating, when grown at 20 °C (68 °F) and under dim light. When minute agar blocks containing mycelium were submerged in distilled water, mycelial strands grew towards the water surface and eventually gave rise to floating fruit bodies connected to the parent agar block by strands of hyphae.[2]

Mycologist Dennis McCabe studied the

Basidiomycete fungus that has adapted to a marine environment;[17] in contrast to L. incarnatum, however, it starts out with a closed fruit body that later opens up to become cup-shaped.[11]

Although it is not known with certainty how the spores are dispersed, they may disperse passively in the water, or a mature spore-containing fruit body may float on the water surface for dispersal. L. incarnatum is

homothallic, a mode of reproduction commonly employed by marine fungi that may confer a competitive advantage in marine environments.[11]

See also

References

  1. .
  2. ^ .
  3. ^ .
  4. ^ .
  5. .
  6. .
  7. PMID 21215950. Archived from the original
    (PDF) on 2012-09-16. Retrieved 2011-07-21.
  8. .
  9. ^ .
  10. .
  11. ^ .
  12. .
  13. ^ Ito T, Yokoyama T (1979). "Distribution of Limnoperdon incarnatum Escobar in rice paddy field soils". Proceedings of the 23rd Annual Meeting of the Mycological Society of Japan. The Mycological Society of Japan. p. 75.
  14. .
  15. ^ Michaelides J, Kendrick B (1982). "The bubble-trap propagules of Beverwykella, Helicoön and other aero-aquatic fungi". Mycotaxon. 14 (1): 247–60.
  16. ^ Escobar GA, McCabe DE (1979). "Limnoperdon, a cyphellaceous fungus with gasteroid basidia?". Mycotaxon. 9 (1): 48–50.
  17. JSTOR 3758619
    .

External links