List of Plasmodium species infecting primates

Source: Wikipedia, the free encyclopedia.

List of Plasmodium species infecting primates
Scientific classification
Domain:
Eukaryota
(unranked):
(unranked):
Alveolata
Phylum:
Class:
Order:
Family:
Genus:
Species

Plasmodium billbrayi
Plasmodium billcollinsi
Plasmodium bouillize
Plasmodium brasilianum
Plasmodium bucki
Plasmodium cercopitheci
Plasmodium coatneyi
Plasmodium coulangesi
Plasmodium cynomolgi bastianelli
Plasmodium cynomolgi ceylonensis
Plasmodium cynomolgi cynomolgi
Plasmodium eylesi
Plasmodium falciparum
Plasmodium fieldi
Plasmodium foleyi
Plasmodium fragile
Plasmodium girardi
Plasmodium georgesi
Plasmodium gonderi
Plasmodium gonderi
Plasmodium gora
Plasmodium gorb
Plasmodium inui
Plasmodium jefferyi
Plasmodium joyeuxi
Plasmodium knowlesi
Plasmodium lemuris
Plasmodium malariae
Plasmodium ovale curtisi
Plasmodium ovale wallikeri
Plasmodium percygarnhami
Plasmodium petersi
Plasmodium reichenowi
Plasmodium rodhaini
Plasmodium sandoshami
Plasmodium semnopitheci
Plasmodium schwetzi
Plasmodium silvaticum
Plasmodium simiovale
Plasmodium simium
Plasmodium uilenbergi
Plasmodium vivax
Plasmodium youngei

Red blood cell infected with malaria

The Plasmodium species infecting primates include the parasites causing malaria in humans.

Species infecting humans

Common infections

Rare cases

While infection of humans by other species is known, they are quite rare, in some instances, only a single case. In a number of the cases, the means of infection is unknown, and may be due to accident, i.e. infection by laboratory equipment or a bite by an animal. With the use of the polymerase chain reaction additional species have been and are still being identified that infect humans.

(Plasmodium brasilianum and Plasmodium rhodiani which have been reported to infect humans, are likely synonymous with P. malariae)

One possible experimental infection has been reported with Plasmodium eylesi. Fever and low grade parasitemia were apparent at 15 days. The volunteer (Dr Bennett) had previously been infected by Plasmodium cynomolgi and the infection was not transferable to a gibbon (P. eylesi 's natural host) so this cannot be regarded as definitive evidence of its ability to infect humans. A second case has been reported that may have been a case of P. eylesi but the author was not certain of the infecting species.[5]

A possible infection with Plasmodium tenue has been reported.[6] This report described a case of malaria in a three-year-old black girl from Georgia, United States, who had never been outside the US. She suffered from both P. falciparum and P. vivax malaria and while forms similar to those described for P. tenue were found in her blood even the author was skeptical about the validity of the diagnosis.

Confusingly Plasmodium tenue was proposed in the same year (1914) for a species found in birds. The human species is now considered to be likely to have been a misdiagnosis and the bird species is described on the Plasmodium tenue page.

Former names

Taxonomy in parasitology until the advent of DNA based methods has always been a problem and revisions in this area are continuing. A number of synonyms have been given for the species infecting humans that are no longer recognised as valid.[7] Since perusal of the older literature may be confusing some currently defunct species names are listed here.

P. camerense

P. causiasium
P. golgi
P. immaculatum
P. laverani var. tertium
P. laverani var. quartum
P. malariae var. immaculatum
P. malariae var. incolor
P. malariae var. irregularis
P. malariae var. parva
P. malariae var. quartanae
P. malariae var. quotidianae
P. perniciosum
P. pleurodyniae
P. praecox
P. quartana
P. quotidianum
P. sedecimanae
P. tenue
P. undecimanae
P. vegesio-tertaniae

P. vivax-minuta

Plasmodium shortii and Plasmodium osmaniae are now considered to be junior synonyms of Plasmodium inui.

Notes

Falciparum

Until recently the only known host of P. falciparum was humans but this species has also been described in gorillas (

Alouatta caraya)[10]
but until this is confirmed its validity should be considered dubious.

A possible report of P. falciparum in a greater spot-nosed monkeys (

Cercopithecus nictitans) has not been confirmed in a large survey.[11]

A species that clusters with P. falciparum and P. reichenowi has been identified in

Pan troglodytes).[12] This appears to have diverged from these two species about 21 million years ago. It has only been identified from the sequence of its mitochondrion to date and further work is needed to characterise the species. A second report has confirmed the existence of this species in chimpanzees.[8] A third report has confirmed the existence of this species.[13]

Night monkeys (

Aotus nigriceps) can be infected with P. falciparum. This infection may occur naturally.[14]
Their potential role - if any - as a source of human infection is unknown.

Two additional species within the subgenus

Pan troglodytes schweinfurthii
). P. billcollinsi was found in only one subspecies of chimpanzee (Pan troglodytes troglodytes). Further work is needed to characterise these species.

Malariae

Humans are currently considered to be the only host for P. malariae. However Rodhain and Dellaert in the 1940s showed with transmission studies that P. malariae was present in chimpanzees.[15][16] The presence of P. malaria in chimpanzees has been reported in Japan suggesting that this species may be able to act as a host.

Aotus trivirgatus) can be infected with P. malariae.[18] Another paper has confirmed the presence of P. malaria in chimpanzees.[19]

The existence of multiple independent reports seem to suggest that the chimpanzee and possibly other species may act as a host to P. malaria at least occasionally.

Vivax

P. vivax will infect chimpanzees. Infection tends to be low grade but may be persistent and remain as source of parasites for humans for some time. P. vivax is also known to infect

Duffy antigen negative humans in this area.[21]

Ovale

Like P. vivax, P. ovale has been shown to be transmittable to chimpanzees. P. ovale has an unusual distribution pattern being found in Africa, Myanmar the Philippines and New Guinea. In spite of its admittedly poor transmission to chimpanzees given its discontigous spread, it is suspected that P. ovale may in fact be a zoonosis with an as yet unidentified host. If this is actually the case, the host seems likely to be a primate. A report has been published suggesting that P. ovale may be a natural parasite of chimpanzees[22] but this needs confirmation. P. ovale has since been described from chimpanzees living in the wild.[13] This suggests that human infection with this species may as previously suspected be a zoonosis.

It has been recently shown that P. ovale is actually two genetically distinct species that coexist. These species are Plasmodium ovale curtisi and Plasmodium ovale wallikeri.[23] These two species separated between 1.0 and 3.5 million years ago.

Knowlesi

Plasmodium knowlesi has a natural reservoir in the macaques of Southeast Asia, and was only in 1965 identified as being transmissible to humans.

Other species

The remaining species capable of infecting humans all have other primate hosts.

Plasmodium taxonomy

  • P. cynomolgi - P. cynomolgi bastianelli, P. cynomolgi ceylonensis and P. cynomolgi cynomolgi.
  • P. inui - P. inui inui and P. inui shortii
  • P. knowlesi - P. knowlesi edesoni and P. knowlesi knowlesi.
  • P. ovale - P. ovale curtisi and P. ovale wallikeri
  • P. vivax - P. vivax hibernans, P. vivax chesson and P. vivax multinucleatum.

Interrelatedness - The evolution of these species is still being worked out and the relationships given here should be regarded as tentative. This grouping, while originally made on morphological grounds, now has considerable support at the DNA level.

  • P. brasilianum, P. inui and P. rodhaini are similar to P. malariae (quartan malaria group)
  • P. cynomolgi, P. fragile, P. knowlesi, P. simium and P. schwetzi are similar to P. vivax
  • P. fieldi and P. simiovale are similar to P. ovale
  • P. falciparum is closely related to P. reichenowi.

Notes

  • P. kochi has been described as a parasite of monkeys. This species is currently classified as Hepatocystis kochi. This may be subject to revision.
  • P. brasilianum and P. rodhaini seem likely to be the same species as P. malariae.
  • P. lemuris may actually belong to the genus Haemoproteus. Clarification of this point awaits DNA examination.
  • P. shortii is currently (2007) regarded as a junior synonym of P. inui.

Subspecies

Many species of Plasmodium which infect primates have been divided into subspecies. Examples are listed below:

Subspecies infecting primates
*P. cynomolgiP. cynomolgi bastianelli and P. cynomolgi ceylonensis.
  • P. inuiP. inui inui and P. inui shortii
  • P. knowlesiP. knowlesi edesoni and P. knowlesi knowlesi.
  • P. vivaxP. vivax hibernans, P. vivax chesson and P. vivax multinucleatum.

Species infecting other hosts

Most if not all Plasmodium species infect more than one host: the host records shown here should be regarded as incomplete.

It has been proposed that the species P. gora and P. gorb should be renamed P. adleri and P. blacklocki respectively.

Primate groups and Plasmodium species

New World monkeys of the family Cebidae: P. brasilianum and P. simium

Old World monkeys of the family

Cercopithecidae
: P. coatneyi, P. cynomolgi, P. fieldi, P. fragile, P.gonderi, P. georgesi, P. inui, P. knowlesi, P. petersi, P. shortti and P. simiovale

Gibbons of the family

Hylobatidae
: P. eylesi, P. hylobati, P. jefferyi and P. youngi

Orangutans (Pongo): P. pitheci and P. silvaticum

Gorillas and chimpanzees: P. billcollini, P. billbrayii, P. falciparum, P. gabonensi, P. gora, P. gorb, P. reichenowi, P. rodhaini and P. schwetzi

Mosquitoes known to transmit human malaria listed by region

This listing may be incomplete as the taxonomy of this genus is under revision.

North American

Central American

South American

North Eurasian

Mediterranean

Afro-Arabian

Afrotropical

Indo-Iranian

Indo-Chinese hills

Malaysian

Chinese

Australasian

Primate mosquito vectors and associated Plasmodium species

References

  1. PMID 5969104.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  2. PMID 5443069.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  3. .
  4. .
  5. ^ Tsukamoto M (1977). "An imported human malarial case characterized by severe multiple infections of the red blood cells". Ann. Trop. Med. Parasitol. 19 (2): 95–104.
  6. .
  7. .
  8. ^ .
  9. ^ .
  10. ^
    PMID 18620330.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  11. .
  12. PMID 19478877.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  13. ^ .
  14. .
  15. ^ Rodhain J (1940). "Les plasmodiums des anthropoids de l'Afrique centrale et leurs relations avec les plasmodiums humains. Récepticité de l'homme au Plasmodium malariae. (Plasmodium rodhaini Brumpt) du chimpanzé". C. R. Soc. Biol. 133: 276–277.
  16. ^ Rodhain J, Dellaert R (1943). "L'infection á Plasmodium malariae du chimpanzé chez l'homme. Etude d'une première souche isolée de l'anthropoide Pan satyrus verus". Ann. Soc. Belge. Med. Trop. 23: 19–46.
  17. PMID 19823579.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  18. .
  19. .
  20. PMID 17326942.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  21. .
  22. PMID 19436742.{{cite journal}}: CS1 maint: multiple names: authors list (link) Open access icon
  23. PMID 20380562.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  24. S2CID 11863223.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  25. PMID 9684622.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  26. .
  27. PMID 8064516.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  28. .
  29. .
  30. .