Log-Cauchy distribution

Source: Wikipedia, the free encyclopedia.
Log-Cauchy
Probability density function
Log-Cauchy density function for values of '"`UNIQ--postMath-00000001-QINU`"'
Cumulative distribution function
Log-Cauchy cumulative distribution function for values of '"`UNIQ--postMath-00000002-QINU`"'
Parameters (real)
(real)
Support
PDF
CDF
Mean infinite
Median
Variance infinite
Skewness does not exist
Excess kurtosis
does not exist
MGF does not exist

In probability theory, a log-Cauchy distribution is a probability distribution of a random variable whose logarithm is distributed in accordance with a Cauchy distribution. If X is a random variable with a Cauchy distribution, then Y = exp(X) has a log-Cauchy distribution; likewise, if Y has a log-Cauchy distribution, then X = log(Y) has a Cauchy distribution.[1]

Characterization

The log-Cauchy distribution is a special case of the log-t distribution where the degrees of freedom parameter is equal to 1.[2]

Probability density function

The log-Cauchy distribution has the probability density function:

where is a real number and .[1][3] If is known, the scale parameter is .[1] and correspond to the location parameter and scale parameter of the associated Cauchy distribution.[1][4] Some authors define and as the location and scale parameters, respectively, of the log-Cauchy distribution.[4]

For and , corresponding to a standard Cauchy distribution, the probability density function reduces to:[5]

Cumulative distribution function

The cumulative distribution function (cdf) when and is:[5]

Survival function

The survival function when and is:[5]

Hazard rate

The

hazard rate
when and is:[5]

The hazard rate decreases at the beginning and at the end of the distribution, but there may be an interval over which the hazard rate increases.[5]

Properties

The log-Cauchy distribution is an example of a heavy-tailed distribution.[6] Some authors regard it as a "super-heavy tailed" distribution, because it has a heavier tail than a Pareto distribution-type heavy tail, i.e., it has a logarithmically decaying tail.[6][7] As with the Cauchy distribution, none of the non-trivial moments of the log-Cauchy distribution are finite.[5] The mean is a moment so the log-Cauchy distribution does not have a defined mean or standard deviation.[8][9]

The log-Cauchy distribution is

Student's t distribution with 1 degree of freedom.[13][14]

Since the Cauchy distribution is a

poles at x=0.[14]

Estimating parameters

The

robust estimator
of .
[1] The median absolute deviation of the natural logarithms of a sample is a robust estimator of .[1]

Uses

In

species abundance patterns.[19]

References

  1. ^ a b c d e f Olive, D.J. (June 23, 2008). "Applied Robust Statistics" (PDF). Southern Illinois University. p. 86. Archived from the original (PDF) on September 28, 2011. Retrieved 2011-10-18.
  2. doi:10.15446/rce.v45n1.90672. Retrieved 2022-04-01.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  3. ^ .
  4. ^ .
  5. ^ .
  6. ^ .
  7. ^ Alves, M.I.F.; de Haan, L. & Neves, C. (March 10, 2006). "Statistical inference for heavy and super-heavy tailed distributions" (PDF). Archived from the original (PDF) on June 23, 2007.
  8. Mathworld
    . Retrieved 2011-10-19.
  9. ^ Wang, Y. "Trade, Human Capital and Technology Spillovers: An Industry Level Analysis". Carleton University: 14. {{cite journal}}: Cite journal requires |journal= (help)
  10. ^ Bondesson, L. (2003). "On the Lévy Measure of the Lognormal and LogCauchy Distributions". Methodology and Computing in Applied Probability: 243–256. Archived from the original on 2012-04-25. Retrieved 2011-10-18.
  11. .
  12. .
  13. .
  14. ^ .
  15. .
  16. .
  17. .
  18. .
  19. .