Philodendron
Philodendron | |
---|---|
![]() | |
Philodendron giganteum, one of the largest Philodendron species | |
Scientific classification ![]() | |
Kingdom: | Plantae |
Clade: | Tracheophytes |
Clade: | Angiosperms |
Clade: | Monocots |
Order: | Alismatales |
Family: | Araceae |
Subfamily: | Aroideae |
Tribe: | Philodendreae |
Genus: | Philodendron Schott[1] |
Synonyms[1] | |
|
Philodendron is a large
Description
Growth habit
Compared to other genera of the family
Secondary hemiepiphytes start life on the ground or on part of a tree trunk very close to the ground, where the seeds sprout. These philodendrons have their roots in the ground early in their lives. They then begin climbing up a tree and eventually may become completely epiphytic, doing away with their subterranean roots. Secondary hemiepiphytes do not always start their lives close to a tree. For these philodendrons, the plant will grow with long
A few species show three peaks in temperature during flowering, which stimulates beetles within the spathe and increasing the likelihood they will be sufficiently coated with pollen. A sticky resin is also produced in drops attached to the spadix which help to keep the pollen attached to the beetles.
Leaves

The leaves are usually large and imposing, often lobed or deeply cut, and may be more or less
The trigger for the transformation to adult leaves can vary considerably. One possible trigger is the height of the plant. Secondary hemiepiphytes start off on the dark forest floor and climb their way up a tree, displaying their juvenile type leaves along the way. Once they reach a sufficient height, they begin developing adult type leaves. The smaller juvenile leaves are used for the darker forest floor where light is in scarce supply, but once they reach a sufficient height in the canopy the light is bright enough that the bigger adult leaves can serve a useful purpose. Another possible trigger occurs in primary hemiepiphytes. These philodendrons typically send their aerial roots downward. Once their roots have reached the ground below, the plant will begin taking up nutrients from the soil, of which it had been previously deprived.[13] As a result, the plant will quickly morph into its adult leaves and gain in size dramatically. Another quality of philodendrons leaves is they are often quite different in shape and size even between two plants of the same species. As a result of all these different possible leaf shapes, it is often difficult to differentiate natural variations from morphogenesis.
Cataphylls
Philodendrons also produce
Roots
Philodendrons have both
Extrafloral nectaries
Some philodendrons have extrafloral nectaries (nectar-producing glands found outside of the flowers). The nectar attracts ants, with which the plant enjoys a protective symbiotic relationship.
Reproduction
Sexual

When philodendrons are ready to reproduce, they will produce an
Once female anthesis is nearing its end and the female flowers have been pollinated, the spathe will be fully open and male anthesis begins. In the beginning of male anthesis, the fertile male flowers complete the process of producing the pollen and the female flowers become unreceptive to further pollination. Additionally, the spadix moves from its 45° position and presses up flush to the spathe. Towards the end of male anthesis, the spathe begins to close from the bottom, working its way up and forcing the beetles to move up and across the upper region of the spathe, where the fertile male flowers are located. In doing so, the philodendron controls when the beetles come and when they leave and forces them to rub against the top of the spadix where the pollen is located as they exit, thus ensuring they are well-coated with pollen. One would expect the beetles to stay indefinitely if they could due to the very favorable conditions the inflorescence provides. After male anthesis, the males will go off and find another philodendron undergoing female anthesis, so will pollinate the female flowers with the pollen it had collected from its previous night of mating.
Fruit
Botanically, the fruit produced is a
The color of the berries can vary depending on the species, but most produce a white berry with slight tones of green. Some produce orange berries and others yellow berries, though. Still others will produce berries that start off white, but then change to another color with time. Philodendrons that produce orange berries tend to be members of the section Calostigma. Contained within the berries are the seeds which are extremely small compared to other members of the family Araceae. The berries often give off odors to attract animals to eat and disperse them. For example, Insects also may be responsible for dispersing seeds, as beetles and wasps have been seen feeding on philodendron berries.
Eurytomid wasps also seek out philodendrons and are known to lay their eggs in the ovaries of many Philodendron species, resulting in galled inflorescences.[23]
Hybridization
Philodendrons exhibit extremely few physical reproductive barriers to prevent hybridization, but very few natural hybrids are found in nature. This may be because philodendrons have many geographic and time barriers to prevent any such cross pollination.[citation needed] For example, it is rare for more than one philodendron species to be flowering at the same time or to be pollinated by the same species of beetles. The beetles have also been observed to be selective to the height of the plant they pollinate, which would serve as an additional preventive measure to make hybrids less likely. Because of these outside barriers, philodendrons may not have had to evolve physical mechanisms to prevent cross-pollination.[citation needed] Hybrids in nature are only rarely reported. When found, these hybrids often can show remarkable genetic relationships. Crosses between two philodendrons in different sections can occur successfully.
Taxonomy
History
Philodendrons are known to have been collected from the wild as early as 1644 by
Modern classification
Philodendron are usually extremely distinctive and not usually confused with other genera, although a few exceptions in the genera Anthurium and Homalomena resemble Philodendron.[30]
The genus Philodendron has been subdivided into three subgenera: Meconostigma, Pteromischum, and Philodendron.[31] In 2018, it was proposed that Philodendron subg. Meconostigma be recognized as a separate genus, Thaumatophyllum.[32]
The genus Philodendron can also be subdivided into several sections and subsections. Section
Typically, the inflorescence is of great importance in determining the species of a given philodendron, since it tends to be less variable than the leaves. The genus Philodendron could be classified further by means of differentiating them based on the pattern of thermogenesis observed, although this is not currently used.[34]
Selected species
- Philodendron acutatum Schott
- Philodendron alliodorum Croat & Grayum
- Philodendron appendiculatum Nadruz & Mayo
- Philodendron auriculatum Standl. & L. O. Williams
- Philodendron balaoanum Engl.
- Philodendron bipennifolium Schott
- Philodendron carinatum E.G.Gonç.
- Philodendron chimboanum Engl.
- Philodendron consanguineum Schott - rascagarganta
- Philodendron cordatum (Vell.) Kunth
- Philodendron crassinervium Lindl.
- Philodendron cruentospathum Madison
- Philodendron davidsonii Croat
- Philodendron devansayeanum L. Linden
- Philodendron domesticum G. S. Bunting
- Philodendron duckei Croat & Grayum
- Philodendron ensifolium Croat & Grayum
- Philodendron erubescens K. Koch & Augustin
- Philodendron eximium Schott
- Philodendron fragrantissimum (Hook.) G. Don in Sweet
- Philodendron ferrugineum Croat
- Philodendron giganteum Schott - giant philodendron
- Philodendron gigas Croat
- Philodendron gloriosum André
- Philodendron gualeanum Engl.
- Philodendron hastatum K. Koch & Sello - silver philodendron, also known incorrectly as Philodendron glaucophyllum
- Philodendron hederaceum (Jacq.) Schott - vilevine, heartleaf philodendron, velvet-leaved philodendron
- Philodendron herbaceum Croat & Grayum
- Philodendron hooveri Croat & Grayum
- Philodendron imbe Schott ex Endl. - philodendron
- Philodendron jacquinii Schott
- Philodendron lacerum (Jacq.) Schott
- Philodendron lingulatum (L.) K. Koch - treelover
- Philodendron mamei André
- Philodendron marginatum Urban - Puerto Rico philodendron
- Philodendron martianum Engl.- also known incorrectly as Philodendron cannifolium
- Philodendron mayoi Symon Mayo
- Philodendron maximum K. Krause
- Philodendron melanochrysum Linden & André
- Philodendron microstictum Standl. & L. O. Williams
- Philodendron musifolium Engl.
- Philodendron nanegalense Engl.
- Philodendron opacum Croat & Grayum
- Philodendron ornatum Schott
- Philodendron pachycaule K. Krause
- Philodendron panduriforme (Kunth) Kunth
- Philodendron pedatum (Hook.) Kunth
- Philodendron pinnatifidum (Jacq.) Schott
- Philodendron pogonocaule Madison
- Philodendron pterotum K.Koch & Augustin
- Philodendron quitense Engl.
- Philodendron radiatum Schott
- Philodendron recurvifolium Schott
- Philodendron renauxii Reitz
- Philodendron riparium Engl.
- Philodendron robustum Schott
- Philodendron rugosum Bogner & G.S.Bunting
- Philodendron sagittifolium Liebm.
- Philodendron santa leopoldina Liebm.
- Philodendron sphalerum Schott
- Philodendron squamiferum Poepp.
- Philodendron standleyi Grayum
- Philodendron tatei Krause
- Philodendron tripartitum (Jacq.) Schott
- Philodendron validinervium Engl.
- Philodendron ventricosum Madison
- Philodendron verrucosum L. Mathieu ex Schott
- Philodendron victoriae G.S. Bunting
- Philodendron warszewiczii K. Koch & C. D. Bouché
- Philodendron wendlandii Schott
Evolution
Philodendron diverged from Adelonema and diversified during the late Oligocene, c. 25 million years ago, in the New World.[35]
Distribution and habitat
Philodendron species can be found in many diverse habitats in the tropical
Philodendrons can also be found in
Ecology
The leaves of philodendrons are also known to be eaten by
The resins produced during the flowering of
The spathe provides a safe breeding area for beetles. As such, male beetles are often followed there by female beetles. The philodendrons benefit from this
Typically, five to 12 beetles will be within the spathe throughout the night. Rarely, cases of 200 beetles at a time have been observed and almost always the beetles are of the same species.
As the beetles home in on the inflorescence, they first move in a zig-zag pattern until they get reasonably close, when they switch to a straight-line path. The beetles may use scent to find the inflorescence when they are far away, but once within range, they find it by means of the infrared radiation, accounting for the two types of paths the beetles follow.
Cultivation
Growing
Philodendrons can be grown outdoors in mild climates in shady spots. They thrive in moist soils with high organic matter. In milder climates, they can be grown in pots of soil or in the case of Philodendron oxycardium in containers of water. Indoor plants thrive at temperatures between 15 and 18 °C and can survive at lower light levels than other house plants.[47] Although philodendrons can survive in dark places, they much prefer bright lights. Wiping the leaves off with water will remove any dust and insects. Plants in pots with good root systems will benefit from a weak fertilizer solution every other week.[48]
Propagation
New plants can be grown by taking stem cuttings with at least two joints. Cuttings then can be rooted in pots of sand and
Hybridizing philodendrons is quite easy if flowering plants are available, because they have very few barriers to prevent hybridization.[citation needed] However, some aspects of making crosses can make philodendron hybridization more difficult. Philodendrons often flower at different times and the time when the spathe opens up varies from plant to plant. The pollen and the inflorescence both have short lives, which means a large collection of philodendrons is necessary if crossbreeding is to be done successfully.[citation needed] The pollen life can be extended to a few weeks by storing it in film canisters in a refrigerator. Artificial pollination is usually achieved by first mixing the pollen with water. A window is then cut into the spathe and the water-pollen mixture is rubbed on the fertile female flowers. The entire spathe is then covered in a plastic bag so the water–pollen mixture does not dry out; the bag is removed a few days later. If the inflorescence has not been fertilized, it will fall off, usually within a few weeks.
Toxicity
Philodendrons can contain as much as 0.7% of
In a 1961 study,
Some philodendrons are known to be toxic to
Uses
Indigenous people from South America use the resin from bees' nests (made from the species) to make their blowguns air- and watertight.
Though they contain calcium oxalate crystals, the berries of some species are eaten by the locals. For example, the sweet white berries of Thaumatophyllum bipinnatifidum are known to be used. Additionally, the aerial roots are also used for rope in this particular species.
Also, in the making of a particular recipe for
Yet another use of philodendrons is for catching
Some philodendrons are also used for ceremonial purposes.
Notes
- ^ a b "Philodendron Schott". Plants of the World Online. Royal Botanic Gardens, Kew. Retrieved 2023-07-18.
- ^ "Philodendron". Plants of the World Online. Royal Botanic Gardens, Kew. Retrieved 2024-06-06.
- ^ Mayo 1990, p. 37
- ^ Croat 1997, p. 312
- ^ Croat 1985, p. 252
- ^ Yu 1994, pp. 222–223
- ^ Gibernau et al. 2008, p. 689
- ISBN 978-1-60469-201-3.
- ^ Barabé, Gibernau & Forest 2002, p. 81
- ^ a b Nagy, Odell & Seymour 1972, p. 1195
- ^ Ray 1990, pp. 1599–1609
- ^ Bell & Bryan 2008, p. 26
- ^ Orihuela & Waechter 2010, pp. 119–122
- ^ Croat 1985, pp. 253–254
- ^ French 1987, pp. 891–903
- ^ Blüthgen et al. 2000, pp. 229–240
- ^ Chouteau, Barabé & Gibernau 2006, p. 818
- ^ Barabé, Gibernau & Forest 2002, p. 80
- ^ Gibernau et al. 1999, p. 1135
- ^ Gonçalves 1997, p. 500
- ^ Vieira & Izar 1999, pp. 75–82
- ^ Gorchov et al. 1995, p. 240
- ^ Gibernau et al. 2002, pp. 1017–1023
- ^ Mayo 1990, pp. 38–39
- ^ Sakuragui & Sakuragui 2001, p. 102
- ^ Mayo 1990, pp. 45–49
- ^ Schott 1832
- ^ Schott 1856
- ^ Schott 1860
- ^ Gauthier, Barabé & Bruneau 2008, pp. 13–27
- ^ Mayo 1990, pp. 37–71
- PMID 29750071.
- ^ Croat 1997, p. 311–704
- ^ Gibernau & Barabé 2000, p. 688
- PMID 29995336.
- ^ Gonçalves & Mayo 2000, p. 483
- ^ Croat & Yu 2006, p. 892
- ^ Croat, Mora & Kirkman 2007, p. 322
- ^ Foxcroft, Richardson & Wilson 2008, p. 44
- ^ Richard-Hansen, Bello & Vié 1998, p. 547
- ^ Mayo 1991, p. 624
- ^ Murphy & Breed 2008, p. 40
- ^ Gibernau et al. 1999, p. 1141
- ^ Gottsberger & Silberbauer-Gottsberger 1991, p. 26
- ^ Seymour & Gibernau 2008, pp. 1353–1354
- ^ Gibernau & Barabé 2000, pp. 685–689
- ^ Swithinbank 2005, p. 97
- ^ "Philodendron". The Terrarium. Retrieved 2023-09-19.
- ^ Frohne & Pfänder 2005, pp. 73–74
- ^ McIntire, Guest & Porterfield 1990
- ^ Mrvos, Dean & Krenzelok 1991, p. 490
- ^ Greer 1961
- ^ a b Sellers et al. 1978, pp. 92–96
- ^ Der Marderosian, Giller & Roia Jr. 1976, pp. 939–953
- ^ Plowman 1969, p. 110
- ^ Plowman 1969, p. 111
References
- Barabé, Denis; Gibernau, Marc; Forest, Félix (May 2002). "Zonal thermogenetic dynamics of two species of Philodendron from two different subgenera (Araceae)". Botanical Journal of the Linnean Society. 139 (1): 79–86. .
- Bell, Adrian D.; Bryan, Alan (2008). Plant Form: An Illustrated Guide to Flowering Plant Morphology. Timber Press. ISBN 978-0-88192-850-1.
- Blüthgen, Nico; Verhaagh, Manfred; Goitía, William; Jaffé, Klaus; Morawetz, Wilfried; Barthlott, Wilhelm (2000). "How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew". Oecologia. 125 (2): 229–240. S2CID 23197651.
- Bown, Deni (2000). Aroids: Plants of the Arum Family [ILLUSTRATED]. Timber Press. ISBN 978-0-88192-485-5.
- Chouteau, Mathieu; Barabé, Denis; Gibernau, Marc (2006). "A Comparative Study of Inflorescence Characters and Pollen-Ovule Ratios Among the Genera Philodendron and Anthurium (Araceae)". International Journal of Plant Sciences. 167 (4): 817–829. S2CID 64351338.
- Croat, Thomas B. (1985). "Collecting and Preparing Specimens of Araceae". Annals of the Missouri Botanical Garden. 72 (2): 252–258. JSTOR 2399178.
- Croat, Thomas B. (1997). "A Revision of Philodendron Subgenus Philodendron (Araceae) for Mexico and Central America". Annals of the Missouri Botanical Garden. 84 (3): 311–704. JSTOR 2992022.
- Croat, Thomas B.; Yu, Guoqin (30 October 2006). "Four New Species of Philodendron (Araceae) from South America". Willdenowia. 36 (2): 885–894. S2CID 86014932.
- Croat, Thomas B.; Mora, Marcela; Kirkman, Ryan W. (2007). "Philodendron scherberichii (Araceae), a new endemic species from a high mountain forest in southwestern Colombia". Willdenowia. 37: 319–322. S2CID 85680750.
- Dart, Richard C. (15 December 2003). Medical Toxicology (3rd ed.). Lippincott Williams & Wilkins. ISBN 978-0-7817-2845-4.
- Der Marderosian, Ara H.; Giller, Fredrick B.; Roia Jr., Frank C. (July 1976). "Phytochemical and Toxicological Screening of Household Ornamental Plants Potentially Toxic to Humans". Journal of Toxicology and Environmental Health. 1 (6): 939–953. PMID 966322.
- Foxcroft, Llewellyn C.; Richardson, David M.; Wilson, John R. U. (2008). "Ornamental Plants as Invasive Aliens: Problems and Solutions in Kruger National Park, South Africa". Environmental Management. 41 (1): 32–51. S2CID 38896378.
- French, J. C. (June 1987). "Systematic Occurrence of a Sclerotic Hypodermis in Roots of Araceae". American Journal of Botany. 74 (6): 891–903. JSTOR 2443870.
- Frohne, Dietrich; Pfänder, Hans Jürgen (2005). Poisonous Plants: A Handbook for Doctors, Pharmacists, Toxicologists, Biologists, and Veterinarians (2nd ed.). Manson Publishing. ISBN 978-1-874545-94-1.
- Gauthier, Marie-Pierre L.; Barabé, Denis; Bruneau, Anne (2008). "Molecular phylogeny of the genus Philodendron (Araceae): delimitation and infrageneric classification". Botanical Journal of the Linnean Society. 156 (1): 13–27. .
- Gibernau, Marc; Barabé, Denis; Cerdan, Philippe; Dejean, Alain (November 1999). "Beetle Pollination of Philodendron solimoesense (Araceae) in French Guiana". International Journal of Plant Sciences. 160 (6): 1135–1143. S2CID 34058297.
- Gibernau, Marc; Barabé, Denis (2000). "Thermogenesis in three Philodendron species (Araceae) of French Guiana". Canadian Journal of Botany. 78 (5): 685–689. doi:10.1139/b00-038.
- Gibernau, Marc; Albre, Jérôme; Dejean, Alain; Barabé, Denis (November 2002). "Seed Predation in Philodendron solimoesense (Araceae) by Chalcid Wasps (Hymenoptera)". International Journal of Plant Sciences. 163 (6): 1017–1023. S2CID 84302858.
- Gibernau, Marc; Orivel, Jérome; Dejean, Alain; Delabie, Jacques; Barabé, Denis (2008). "Flowering as a key factor in ant–Philodendron interactions". Journal of Tropical Ecology. 24 (6): 689–692. S2CID 84760152.
- Gonçalves, Eduardo G. (1997). "A New Species of Philodendron (Araceae) from Central Brazil". Kew Bulletin. 52 (2): 499–502. JSTOR 4110401.
- Gonçalves, Eduardo G.; Mayo, Simon J. (2000). "Philodendron venustifoliatum (Araceae): A New Species from Brazil". Kew Bulletin. 55 (2): 483–486. JSTOR 4115665.
- Gorchov, David L.; Cornejo, Fernando; Ascorra, Cesar F.; Jaramillo, Margarita (November 1995). "Dietary Overlap between Frugivorous Birds and Bats in the Peruvian Amazon". Oikos. 74 (2): 235–250. S2CID 87074979.
- Gottsberger, Gerhard; Silberbauer-Gottsberger, Ilse (March 1991). "Olfactory and Visual Attraction of Erioscelis emarginata (Cyclocephalini, Dynastinae) to the Inflorescences of Philodendron selloum (Araceae)". Biotropica. 23 (1): 23–28. JSTOR 2388684.
- Greer, M. J. (1961). "Plant Poisonings in Cats". Modern Veterinary Practice.
- Kramer, Jack (1974). Philodendrons. Scribner. ISBN 978-0-684-13698-1.
- Mayo, S. J. (1990). "History and Infrageneric Nomenclature of Philodendron (Araceae)". Kew Bulletin. 45 (1): 37–71. JSTOR 4114436.
- Mayo, S. J. (1991). "A Revision of Philodendron Subgenus Meconostigma (Araceae)". Kew Bulletin. 46 (4): 601–681. JSTOR 4110410.
- McColley, R. H.; Miller, H. N. (1965). "Philodendron improvement through hybridization". Proceedings of the Florida State Horticultural Society. 78: 409–415.
- McIntire, Matilda S.; Guest, James R.; Porterfield, John F. (1990). "Philodendron - an infant death". Journal of Toxicology: Clinical Toxicology. 28 (2): 177–183. PMID 2398518.
- Mrvos, Rita; Dean, Bonnie S.; Krenzelok, Edward P. (1991). "Philodendron/dieffenbachia ingestions: are they a problem?". Journal of Toxicology: Clinical Toxicology. 29 (4): 485–491. PMID 1749055.
- Murphy, Christina M.; Breed, Michael D. (2008). "Nectar and Resin Robbing in Stingless Bees". American Entomologist. 54 (1): 36–44. .
- Nagy, Kenneth A.; Odell, Daniel K.; Seymour, Roger S. (15 December 1972). "Temperature Regulation by the Inflorescence of Philodendron". Science. 178 (4066): 1195–1197. S2CID 8490981.
- Orihuela, Rodrigo Leonel Lozano; Waechter, Jorge Luiz (2010). "Host size and abundance of hemiepiphytes in a subtropical stand of Brazilian Atlantic Forest". Journal of Tropical Ecology. 26 (1): 119–122. S2CID 83971743.
- Pierce, J. H. (1970). "Encephalitis Signs from Philodendron Leaf". Modern Veterinary Practice.
- Plowman, Timothy (1969). "Folk Uses of New World Aroids". Economic Botany. 23 (2): 97–122. S2CID 7701228.
- Ray, Thomas S. (December 1990). "Metamorphosis in the Araceae". American Journal of Botany. 77 (12): 1599–1609. JSTOR 2444492.
- Richard-Hansen, Cécile; Bello, Natalia; Vié, Jean-Christophe (October 1998). "Tool use by a red howler monkey (Alouatta seniculus) towards a two-toed sloth (Choloepus didactylus)". Primates. 39 (4): 545–548. S2CID 30385216.
- Sakuragui, Cássia M.; Sakuragui, Cassia M. (2001). "Two New Species of Philodendron (Araceae) from Brazil". Novon. 11 (1): 102–104. JSTOR 3393217.
- Schott, Heinrich Wilhelm (1832). Meletemata Botanica.
- Schott, Heinrich Wilhelm (1856). Synopsis aroidearum.
- Schott, Heinrich Wilhelm (1860). Prodromus Systematis Aroidearum.
- Sellers, Sarah J.; King, Maralee; Aronson, Carl E.; Der Marderosian, Ara H. (April 1978). "Toxicologic assessment of Philodendron oxycardium Schott (Araceae) in domestic cats". Veterinary and Human Toxicology. 20 (2): 92–96. ISSN 0145-6296.
- Seymour, Roger S.; Gibernau, Marc (2008). "Respiration of thermogenic inflorescences of Philodendron melinonii: natural pattern and responses to experimental temperatures". Journal of Experimental Botany. 59 (6): 1353–1362. PMID 18375932.
- Spoerke Jr., David G.; Smolinske, Susan C. (3 July 1990). Toxicity of Houseplants (1st ed.). CRC Press. ISBN 978-0-8493-6655-0.
- Swithinbank, Anne (1 January 2005). Conservatory Gardener. New Line Books. ISBN 978-1-57717-195-9.
- Vieira, Emerson M.; Izar, Patrícia (1999). "Interactions between aroids and arboreal mammals in the Brazilian Atlantic rainforest". Plant Ecology. 145 (1): 75–82. S2CID 36526471.
- Yu, Douglas W. (June 1994). "The Structural Role of Epiphytes in Ant Gardens". Biotropica. 26 (2): 222–226. JSTOR 2388813.