Protein–energy malnutrition

Source: Wikipedia, the free encyclopedia.
Protein–energy undernutrition
Other namesProtein–calorie undernutrition, PEU, PCU, PEM, PCM
Child in the United States with signs of kwashiorkor, an example of protein-energy undernutrition.
SpecialtyEndocrinology Edit this on Wikidata

Protein–energy undernutrition (PEU), once called protein-energy malnutrition (PEM), is a form of malnutrition that is defined as a range of conditions arising from coincident lack of dietary protein and/or energy (calories) in varying proportions. The condition has mild, moderate, and severe degrees.

Disability-adjusted life year for protein–energy malnutrition per 100,000 inhabitants in 2004.
  no data
  less than 10
  10–100
  100–200
  200–300
  300–400
  400–500
  500–600
  600–700
  700–800
  800–1000
  1000–1350
  more than 1350

Types include:[1]

  • Kwashiorkor (protein malnutrition predominant)
  • Marasmus (deficiency in calorie intake)
  • Marasmic kwashiorkor (marked protein deficiency and marked calorie insufficiency signs present, sometimes referred to as the most severe form of malnutrition)

PEU is fairly common worldwide in both children and adults and accounts for about 250,000 deaths annually.[2] In the industrialized world, PEM is predominantly seen in hospitals, is associated with disease, or is often found in the elderly.[3]

Note that PEU may be secondary to other conditions such as

cancer cachexia[5]
in which protein energy wasting (PEW) may occur.

Protein–energy undernutrition affects children the most because they have less protein intake.[further explanation needed] The few rare cases found in the developed world are almost entirely found in small children as a result of fad diets, or ignorance of the nutritional needs of children, particularly in cases of milk allergy.[6]

Prenatal protein undernutrition

Protein undernutrition is detrimental at any point in life, but protein undernutrition prenatally has been shown to have significant lifelong effects. Diets that consist of less than 6% protein in utero have been linked with many deficits, including decreased brain weight, increased obesity, and impaired communication within the brain in some animals. Even diets of mild protein undernutrition (7.2%) have been shown to have lasting and significant effects in rats. The following are some studies in which prenatal protein deficiency has been shown to have unfavorable consequences.

From these studies it is possible to conclude that prenatal protein nutrition is vital to the development of the fetus, especially the brain, the susceptibility to diseases in adulthood, and even gene expression. When pregnant females of various species were given low-protein diets, the offspring were shown to have many deficits. These findings highlight the great significance of adequate protein in the prenatal diet.

Epidemiology

Deaths from protein-energy malnutrition per million persons in 2012
  0-0
  1-3
  4-6
  7-13
  14-22
  23-38
  39-65
  66-182
  183-313
  314-923

Although protein energy malnutrition is more common in low-income countries, children from higher-income countries are also affected, including children from large urban areas in low socioeconomic neighborhoods. This may also occur in children with chronic diseases, and children who are institutionalized or hospitalized for a different diagnosis. Risk factors include a primary diagnosis of intellectual disability, cystic fibrosis, malignancy, cardiovascular disease, end stage renal disease, oncologic disease, genetic disease, neurological disease, multiple diagnoses, or prolonged hospitalization. In these conditions, the challenging nutritional management may get overlooked and underestimated, resulting in an impairment of the chances for recovery and the worsening of the situation.[16]

PEM is fairly common worldwide in both children and adults and accounts for 250,000 deaths annually.[3] In the industrialized world, PEM is predominantly seen in hospitals, is associated with disease, or is often found in the elderly.[3]

Co-morbidity

A large percentage of children that suffer from PEM also have other co-morbid conditions. The most common co-morbidities are diarrhea (72.2% of a sample of 66 subjects) and malaria (43.3%). However, a variety of other conditions have been observed with PEM, including sepsis, severe anaemia, bronchopneumonia, HIV, tuberculosis, scabies, chronic suppurative otitis media, rickets, and keratomalacia. These co-morbidities, according to Agozie Ubesie and other paediatricians, tax already malnourished children and may prolong hospital stays initially for PEM and may increase the likelihood of death.[17]

The general explanation of increased infectious comorbidity in malnourished people is that (1) the

associations between malnutrition and other health risks via the common underlying factor of poverty. For example, condoms can reduce spread of HIV, but impoverished people often may not have money to buy condoms or a nearby place to buy them. Also, once a poor person has any particular infection, they may not have access to optimal treatment of it, which allows it to get worse, present more chances of transmission, and so on. Even when a developing country nominally/officially has national health insurance with universal health care, the poorest quarter of its population may face a de facto
reality of poor health care access.

References

Further reading

External links