Pulsational pair-instability supernova
This article needs additional citations for verification. (March 2019) |
A pulsational pair-instability supernova is a
Stellar behaviours
Below 100 M☉
Thermal
100–130 M☉
In stars of 100–130 M☉, a pulsational pair-instability supernova can occur. Stars like this are massive enough that the
Above 130 M☉
Stars above 130 M☉ will have enough mass to create pairs of electrons and positrons; in these stars there will be greater pair production than in stars less than 130 M☉. Stars of 130 to 150 M☉ will often undergo pulsational pair-instability supernovae and potentially undergo more than one pulsation to bring its mass under 100 M☉ although they can potentially go full supernova. Stars above 150 M☉ will generally produce much greater levels of electron-positron pairs and will usually produce more than just that required of a pulsational pair-instability supernova. The star will heat up more than in the 100–130 M☉ stars and the thermal runaway reaction when the oxygen fuel ignites will be far greater. As a result, most stars above 150 M☉ will undergo a complete pair-instability supernova [2][1].
Physics
Photon pressure
Light in thermal equilibrium has a
In very large hot stars, pressure from gamma rays in the stellar core keeps the upper layers of the star supported against gravitational pull from the core. If the energy density of gamma rays is suddenly reduced, then the outer layers of the star will collapse inwards. The sudden heating and compression of the core generates gamma rays energetic enough to be converted into an avalanche of electron-positron pairs, further reducing the pressure. When the collapse stops, the positrons find electrons and the pressure from gamma rays is driven up, again.
Pair creation and annihilation
Sufficiently energetic gamma rays can interact with nuclei, electrons, or one another to produce electron-positron pairs, and electron-positron pairs can annihilate, producing gamma rays. From Einstein's equation E = mc2, gamma rays must have more energy than the mass of the electron–positron pairs to produce these pairs.
At the high densities of a stellar core, pair production and annihilation occur rapidly, thereby keeping gamma rays, electrons, and positrons in thermal equilibrium. The higher the temperature, the higher the gamma ray energies, and the larger the amount of energy transferred.
Pair-instability
As temperatures and gamma ray energies increase, more and more gamma ray energy is absorbed in creating electron-positron pairs. This reduction in gamma ray energy density reduces the radiation pressure that supports the outer layers of the star. The star contracts, compressing and heating the core, thereby increasing the proportion of energy absorbed by pair creation. Pressure nonetheless increases, but in a pair-instability collapse, the increase in pressure is not enough to resist the increase in gravitational forces as the star becomes denser.
Light curves and spectra
Pulsational pair-instability supernovae are likely the most common pair-instability events and are probably common causes of supernova impostor events. Depending on the nature of the progenitor star they may take the appearance of either a type II, type Ib or type Ic supernova. [2]. Like full scale pair-instability supernovae, pulsational pair-instability supernova are very bright and last for many months longer than a typical type II or type I supernova.
Known pulsational pair-instability events
Possible examples of pulsational pair-instability supernovae include the 1843 eruption of
References
- ^ This star cheated death, exploding again and again. Lisa Grossman, Science News. 8 November 2017.
- ^ This Star Went Supernova … And Then Went Supernova Again Archived 2018-05-31 at the Wayback Machine. Jake Parks, Discovery Magazine. 9 November 2017.