SN 2011fe

Source: Wikipedia, the free encyclopedia.
SN 2011fe
Mly[3]
Redshift0.001208 ±5e-06 Edit this on Wikidata
HostPinwheel Galaxy (M101)[1]
Peak apparent magnitude9.9[4]
Other designationsSN 2011fe
  Related media on Commons
]

SN 2011fe, initially designated PTF 11kly, was a

light years from Earth.[3] It was observed by the PTF survey very near the beginning of its supernova event, when it was approximately 1 million times too dim to be visible to the naked eye. It is the youngest type Ia ever discovered.[5] About 13 September 2011, it reached its maximum brightness of apparent magnitude +9.9[6] which equals an absolute magnitude of about -19, equal to 2.5 billion Suns. At +10 apparent magnitude around 5 September, SN 2011fe was visible in small telescopes. As of 30 September the supernova was at +11 apparent magnitude in the early evening sky after sunset above the northwest horizon. It had dropped to +13.7 as of 26 November 2011.[7]

Discovery

The Palomar Transient Factory is an automated telescopic survey that scans the sky for transient and variable astronomical events. Information is fed to the

Keck Observatory
in Hawaii were used to observe the event in greater detail.

Although SN 2011fe was initially very faint, it brightened rapidly. On the day it was first imaged, 24 August 2011, it was 1 million times too dim to be visible to the unaided eye. One day later, it was 10 thousand times too dim. The next day it was 6 times brighter than that. On 25 August, the

EVLA radio telescope failed to detect radio emissions from SN 2011fe. While such emissions are common for other types of supernovae, they have never been observed for Type Ia's.[8]

Two possible candidates were proposed for the precursor system;[9] however, subsequent analysis appears to rule them out. [10]

Importance of Type Ia supernovae and SN 2011fe

Type Ia supernova events occur when a

standard candles" to measure the distance to their host galaxies. The exact brightness and behavior of a Type Ia supernova depends on the metallicity of its parent star (the fraction of the star composed of elements heavier than hydrogen and helium before its evolution into a white dwarf). Because the SN 2011fe event was detected so early, astronomers can gain a more accurate measurement of its initial composition and of its evolution during the supernova explosion, and so refine their models of Type Ia supernova events, resulting in more precise distance estimates for other Type Ia supernova observations.1

Type Ia supernova standard candles may help provide evidence to support the hypothesis of

A better understanding of type Ia supernova behavior may in turn allow theoretical models of dark energy to be improved.

References

  1. ^ a b c d e Beatty, Kelly (25 August 2011). "Supernova Erupts in Pinwheel Galaxy". Sky & Telescope. Retrieved 26 August 2011.
  2. ^ a b c Templeton, Matthew (24 August 2011). "Special Notice #250: Possible Type-Ia Supernova in M101". American Association of Variable Star Observers. Archived from the original on 28 December 2013. Retrieved 26 August 2011. {{cite journal}}: Cite journal requires |journal= (help)
  3. ^
    S2CID 121792901
    .
  4. ^ List of supernovae sorted by Magnitude for 2011 (David Bishop)
  5. ^ "Berkeley Scientists Discover an "Instant Cosmic Classic" Supernova". 25 August 2011.
  6. ^ Hartmut Frommert & Christine Kronberg (15 Sep 2011). "Supernova 2011fe in M101". Retrieved 17 Sep 2011.
  7. ^ "[vsnet-recent-sn 2676] SN2011ht recent (Cont'd)".
  8. ^ http://www.astronomerstelegram.org/?read=3597 EVLA Radio Observations of SN 2011fe
  9. ^ Weidong Li; et al. (25 August 2011). "Further Analysis of the archival HST images of PTF11kly in M101". The Astronomer's Telegram. Retrieved 25 August 2011.
  10. ^ S. J. Smartt; et al. (1 Sep 2011). "No progenitor detection for PTF11kly/SN2011fe in Hubble Space Telescope pre-explosion images". The Astronomer's Telegram. Retrieved 6 Sep 2011. [The ]detection limit is still not deep enough to place restrictive limits on the binary companion to the white dwarf. Low-mass red giants and main-sequence stars below about 5 solar masses would remain undetected.
  11. S2CID 118910636
    .

External links