FKM

Source: Wikipedia, the free encyclopedia.
(Redirected from
Viton
)

FKM is a family of fluorocarbon-based fluoroelastomer materials defined by ASTM International standard D1418,[1] and ISO standard 1629.[2] It is commonly called fluorine rubber or fluoro-rubber. FKM is an abbreviation of Fluorine Kautschuk Material.[3] All FKMs contain vinylidene fluoride as the common monomer, to which different other monomers are added for specific types and functionalities, fitting the desired application.

Originally developed by

DuPont (under the brand name Viton, now owned by Chemours), FKMs are today also produced by many other companies, including: Daikin (Dai-El),[4] 3M (Dyneon),[5] Solvay S.A. (Tecnoflon),[6] HaloPolymer (Elaftor),[7] Gujarat Fluorochemicals (Fluonox),[8] and several Chinese manufacturers. Fluoroelastomers are more expensive than neoprene or nitrile rubber elastomers. They provide additional heat and chemical resistance.[9] FKMs can be divided into different classes on the basis of either their chemical composition, their fluorine content, or their cross-linking
mechanism.

Types

On the basis of their chemical composition FKMs can be divided into the following types:

Cross-linking mechanisms

There are three established cross-linking mechanisms used in the curing process of FKMs.

Properties

Fluoroelastomers provide excellent high temperature (up to 500°F or 260°C[11]) and aggressive fluids resistance when compared with other elastomers, while combining the most effective stability to many sorts of chemicals and fluids such as oil, diesel, ethanol mix or body fluid.[4]

The performance of fluoroelastomers in aggressive chemicals depends on the nature of the base polymer and the compounding ingredients used for molding the final products (e.g.

methyl ethyl ketone, ester solvents such as ethyl acetate, amines, and organic acids such as acetic acid
.

They can be easily distinguished from many other elastomers because of their high density of over 1800 kg/m3, significantly higher than most types of rubber.[12][13][14]

Applications

Because of their outstanding performance they find use in a number of sectors, including the following:

  • Chemical process and petroleum refining, where they are used for seals, pumps, gaskets and so on, due to their resistance to chemicals;
  • Analysis and process instruments: separators, diaphragms, cylindrical fittings, hoops, gaskets, etc.
  • Semiconductor manufacturing;
  • Food and pharmaceutical, because of their low degradation, also in contact with fluids;
  • Aviation and aerospace: high operating temperatures and high altitudes require superior heat and low-temperature resistance.[4]

They are suitable for the production of wearables, due to low wear and discoloration even during prolonged lifetimes in contact with skin oils and frequent exposure to light, while guaranteeing high comfort and stain resistance;[15]

The automotive industry represents their main application sector, where constant reach for higher efficiencies push manufacturers towards high-performing materials.[16] An example are FKM o-rings used as an upgrade to the original neoprene seals on Corvair pushrod tubes that deteriorated under the high heat produced by the engine, allowing oil leakage. FKM tubing or lined hoses are commonly recommended in automotive and other transportation fuel applications when high concentrations of biodiesel are required. Studies indicate that types B and F (FKM- GBL-S and FKM-GF-S) are more resistant to acidic biodiesel. (This is because biodiesel fuel is unstable and oxidizing.)[citation needed]

FKM O-rings have been used safely for some time in

SCUBA diving by divers using gas blends referred to as nitrox
. FKMs are used because they have a lower probability of catching fire, even with the increased percentages of oxygen found in nitrox. They are also less susceptible to decay under increased oxygen conditions.

While these materials have a wide range of applications, their cost is prohibitive when compared to other types of elastomers, meaning that their adoption must be justified by the need for outstanding performance (as in the aerospace sector) and is inadvisable for low-cost products.

FKM/butyl gloves are highly impermeable to many strong organic solvents that would destroy or permeate commonly used gloves (such as those made with nitriles).

Precautions

At high temperatures or in a fire, fluoroelastomers decompose and may release hydrogen fluoride. Any residue must be handled using protective equipment.

See also

References

  1. ^ "ASTM D1418 - 21 Standard Practice for Rubber and Rubber Latices—Nomenclature". www.astm.org. Retrieved 2021-06-20.
  2. ^ "ISO 1629:2013". ISO. Retrieved 2021-06-20.
  3. S2CID 251658624
    .
  4. ^
    Daikin Global
    . 2021. Retrieved 5 March 2021.
  5. ^ "3M Fluoropolymers". Retrieved 20 June 2021.
  6. ^ "Tecnoflon FKM & PFR FFKM". Solvay.com. Brussels: Solvay S.A. 2021. Retrieved 5 March 2021.
  7. ^ "Fluoroelastomers (FKM & FFKM)". HaloPolymer.com. Moscow: HaloPolymer. 2021. Retrieved 5 March 2021.
  8. Gujarat Fluorochemicals Ltd.
    (GFL). 2021. Retrieved 5 March 2021.
  9. S2CID 251658624
    .
  10. ^ "Base Resistant FKM Technology in Oilfield_Seals" (PDF). Archived from the original (PDF) on 16 July 2011. Retrieved 16 July 2009.
  11. ^ "Fluoroelastomer Polymers from Precision Associates". Precision Associates, Inc. Retrieved 2021-06-20.
  12. ^ "Properties and Characteristics - Urethanes / Rubbers | MISUMI USA: Industrial Configurable Components Supply". us.misumi-ec.com. Retrieved 2021-06-20.
  13. ^ "Application And Classification Of Teflon".
  14. ^ "Density of Solid Materials". Retrieved 2021-06-20.
  15. ^ "Meeting Consumer Wearables Demands with Fluoroelastomers". www.viton.com. Retrieved 2021-06-20.
  16. ^ Hertz, Dan jr. "Fluoroelastomer Development" (PDF). SEALS EASTERN. Retrieved 20 June 2021.

External links

This page is based on the copyrighted Wikipedia article: Viton. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy