YAP1

Source: Wikipedia, the free encyclopedia.
YAP1
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001171147
NM_009534

RefSeq (protein)

NP_001164618
NP_033560

Location (UCSC)Chr 11: 102.11 – 102.23 MbChr 9: 7.93 – 8 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

YAP1 (yes-associated protein 1), also known as YAP or YAP65, is a protein that acts as a

tyrosine kinases.[5] YAP1 is a potent oncogene, which is amplified in various human cancers.[6][7]

Structure

Modular Structure of YAP1 Isoforms

Cloning of the YAP1 gene facilitated the identification of a modular

amino terminus, which is followed by a TID (TEAD transcription factor interacting domain).[13] Next, following a single WW domain, which is present in the YAP1-1 isoform, and two WW domains, which are present in the YAP1-2 isoform, there is the SH3-BM (Src Homology 3 binding motif).[5][14] Following the SH3-BM is a TAD (transactivation domain) and a PDZ domain-binding motif (PDZ-BM) (Figure 1).[15][16]

Function

YAP1 is a transcriptional co-activator

phosphorylated on a serine residue and sequestered in the cytoplasm by 14-3-3 proteins.[32] When the Hippo pathway is not activated, YAP1/TAZ enter the nucleus and regulate gene expression.[32]

It is reported that several genes are regulated by YAP1, including

Hoxc13
.

YAP/TAZ have also been shown to act as stiffness sensors, regulating mechanotransduction independently of the Hippo signalling cascade.[33]

As YAP and TAZ are transcriptional co-activators, they do not have DNA-binding domains. Instead, when inside the nucleus, they regulate gene expression through TEAD1-4 which are sequence-specific transcription factors that mediate the main transcriptional output of the Hippo pathway.

VGLL4 interaction which functions as a transcriptional repressor.[35] Mouse models with YAP over-expression have been shown to exhibit up-regulation of the TEAD target gene expression which results in increased expansion of progenitor cells and tissue overgrowth.[36]

Regulation

Biochemical

On the left, the signaling cascade is inactivated so YAP readily localizes to the nucleus for transcription. On the right, the signal cascade causes YAP to localize to the cytoplasm, preventing transcription.

At the biochemical level, YAP is part of and regulated by the Hippo signaling pathway where a kinase cascade results in its “inactivation”, along with that of TAZ.

MAP4Ks.[42][43] LATS1/2 then phosphorylate YAP and TAZ which causes them to bind with 14-3-3, resulting in cytoplasmic sequestration of YAP and TAZ.[44]
The result of the activation of this pathway is the restriction of YAP/TAZ from entering the cell nucleus.

Mechanotransductive

Additionally, YAP is regulated by mechanical cues such as extracellular matrix (ECM) rigidity, strain,

lamin A, has been shown to decrease nuclear YAP localization.[50][51]

Clinical significance

Cancer

Dysregulation of YAP/TAZ-mediated transcriptional activity is implicated in the development of abnormal cell growth and hyperactivation of YAP and TAZ has been observed amongst many cancers.[49][52][53] Hence YAP1 represents a potential target for the treatment of cancer.[54]

While YAP has been identified as a proto-oncogene, it can also act as a tumor suppressor depending on cellular context.[55]

As a drug target

The YAP1 oncogene serves as a target for the development of new cancer drugs.[56] Small compounds have been identified that disrupt the YAP1-TEAD complex or block the binding function of WW domains.[57][58] These small molecules represent lead compounds for the development of therapies for cancer patients, who harbor amplified or overexpressed YAP oncogene.

Neuroprotection

The Hippo/YAP signaling pathway may exert

blood-brain barrier disruption after cerebral ischemia/reperfusion injury.[59]

Mutations

Heterozygous loss-of-function mutations in the YAP1 gene have been identified in two families with major eye malformations with or without extra-ocular features such as hearing loss, cleft lip, intellectual disability and renal disease.[60]

External links

  • Overview of all the structural information available in the PDB for UniProt: P46937 (Human Transcriptional coactivator YAP1) at the PDBe-KB.
  • Overview of all the structural information available in the PDB for UniProt: P46938 (Mouse Transcriptional coactivator YAP1) at the PDBe-KB.

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000137693Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000053110Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^
    PMID 8035999
    .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. ^ .
  14. .
  15. .
  16. .
  17. ^ .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. ^ .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. ^ .
  46. .
  47. .
  48. ^ .
  49. ^ .
  50. .
  51. .
  52. .
  53. .
  54. .
  55. .
  56. .
  57. .
  58. .
  59. .
  60. .
This page is based on the copyrighted Wikipedia article: YAP1. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy