Эндомембранная система

Эндомембра́нная систе́ма — система разнообразных
Ядерная оболочка состоит из двух
У
Органеллы эндомембранной системы связаны друг с другом или непосредственным контактом, или через перенос мембранных пузырьков — везикул. Несмотря на эту общность, различные мембраны отличаются по структуре и функциям. Толщина, молекулярный состав и метаболическое поведение мембраны не фиксированы, и они могут изменяться несколько раз в течение жизни мембраны. Единственной общей характеристикой мембран является наличие липидного бислоя, который пронизан
История изучения
Первое предположение о том, что мембраны внутри клетки формируют единую систему, компоненты которой обмениваются веществами друг с другом, было сформулировано Morré и Mollenhauer в 1974 году.
Компоненты системы
Ядерная оболочка

Ядерная оболочка окружает
Форма ядерной оболочки определяется сетью промежуточных филаментов, похожей на арматуру, которая называется ядерная ламина. Она связывается с хроматином, интегральными мембранными белками и другими компонентами ядра, располагающимися вблизи внутренней ядерной мембраны. Считается, что ядерная ламина помогает веществам внутри ядра достичь ядерных пор, а также участвует в разборке ядерной оболочки при митозе и её сборке в конце митоза[2].
Ядерные поры чрезвычайно эффективно осуществляют селективный транспорт веществ внутрь и из ядра. Из ядра в цитоплазму постоянно перемещаются
Эндоплазматический ретикулум
Эндоплазматический ретикулум (ЭПР) — мембранная органелла синтеза и транспорта, которая является продолжением наружной ядерной мембраны. Более чем половина мембран эукариотической клетки приходится на ЭПР. ЭПР состоит из уплощённых мешочков и ветвящихся трубочек, которые, как считают, связаны друг с другом, так что мембрана ЭПР представляет собой непрерывный замкнутый слой, заключающий сильно разветвлённое внутреннее пространство (люмен). На люмен приходится около десяти процентов объёма клетки. Мембрана ЭПР позволяет протекать эффективному селективному транспорту веществ между люменом и цитоплазмой и, поскольку она соединена с наружной ядерной мембраной, она формирует канал между ядром и цитоплазмой[17].
ЭПР играет ключевую роль в образовании, модификации и транспорте биохимических соединений для внутреннего и внешнего использования клеткой. Его мембрана служит местом образования всех
Существует два различных, хотя и соединённых друг с другом, отдела ЭПР, имеющих разные структуру и функции: гладкий (агранулярный) ЭПР и шероховатый (гранулярный) ЭПР. Шероховатый эндоплазматический ретикулум получил своё название за то, что его обращённая к цитоплазме сторона покрыта рибосомами, которые придают ему шероховатый облик при рассматривании под
Гладкий эндоплазматический ретикулум
В подавляющем большинстве клеток участки гладкого ЭПР малочисленны и часто частично являются гладкими, а частично шероховатыми. Их иногда называют переходным ЭПР, потому что в них находятся места выхода из ЭПР, от которых отпочковываются везикулы, несущие новосинтезированные белки и липиды к аппарату Гольджи. В некоторых специализированных клетках, впрочем, гладкий ЭПР обилен и имеет некоторые специфические функции. В этих клетках гладкий ЭПР может служить местом синтеза липидов, некоторых этапов метаболизма
.Ферменты гладкого ЭПР необходимы для синтеза липидов, в том числе масел,
Клетки
.Ферменты гладкого ЭПР также могут служить для детоксикации лекарств и ядов. Детоксикация, как правило, включает добавление гидроксильной группы к препарату, что делает его более растворимым и способным выйти из организма. Одна хорошо изученная реакция осуществляется цитохромом P450[17][19].
В
.Шероховатый эндоплазматический ретикулум
Клетки многих типов образуют белки, которые синтезируются рибосомами, прикреплёнными к шероховатому ЭПР. Рибосомы собирают белки из аминокислот, и белки проникают в ЭПР для дальнейшей модификации. Такие белки могут быть трансмембранными белками, которые пронизывают мембрану ЭПР, или водорастворимыми белками, которые проходят из мембраны в люмен. Белки, проникающие внутрь ЭПР, укладываются в правильную трёхмерную структуру. К ним присоединяются углеводные остатки, и далее готовые белки либо транспортируются дальше из ЭПР (секретируемые белки) в те участки клетки, где они нужны, либо отправляются в аппарат Гольджи, где подвергаются дальнейшей модификации[17][19].
Как только секретируемый белок образовался, он оказывается отделённым мембраной ЭПР от цитозольных белков. Секретируемые белки отделяются от ЭПР, упакованные в везикулы, которые отпочковываются, как пузырьки, от мембраны ЭПР. Везикулы, которые доставляют свой груз к другим частям клетки, называются транспортными везикулами[17][19]. Другой механизм для транспорта белков и липидов из ЭПР в прочие органеллы заключается в их переносе через особые транспортные мембранные белки, расположенные в сайте контакта мембран, где ЭПР близко и стабильно связан с другими органеллами, такими как плазматическая мембрана, аппарат Гольджи или лизосомы[20].
Кроме образования секретируемых белков, шероховатый ЭПР принимает участие в росте мембраны за счёт добавления белков и фосфолипидов. Когда мембранный белок синтезируется рибосомой, сидящей на ЭПР, он сам вставляется в мембрану ЭПР и остаётся заякоренным в мембране своим гидрофобным участком. Шероховатый ЭПР также образует свои собственные мембранные фосфолипиды; ферменты, встроенные в мембрану ЭПР, участвуют в их синтезе. Мембрана ЭПР увеличивается в размерах, и её фрагменты могут быть перенесены транспортными везикулами в другие компоненты эндомембранной системы[17][19].
Аппарат Гольджи

Аппарат Гольджи состоит из соединённых между собой мешочков, называемых цистернами. По виду он напоминает стопку
Везикулы, отправляемые из ЭПР в аппарат Гольджи, подвергаются там дальнейшей модификации и далее посылаются к другим частям клетки или к плазматической мембране для секреции. По мере продвижения по изобилующему ферментами внутреннему пространству аппарата с белками могут происходить различные превращения. Часто на них навешиваются и модифицируются углеводные хвосты, и в результате образуются
Когда модификация белков завершается, аппарат Гольджи сортирует продукты превращений и отсылает их к различным частям клетки. Этому способствуют разнообразные метки, пришиваемые к белкам ферментами аппарата Гольджи. Полностью готовые белки отпочковываются в везикулах от транс-Гольджи и направляются к местам назначения[23].
Везикулы
Везикулы — это маленькие мембраносвязанные транспортные единицы, которые могут переносить молекулы между различными компартментами. Большинство везикул переносят мембраны, собранные в ЭПР, в аппарат Гольджи, а от аппарата Гольджи — в различные места клетки[24].
Существует несколько типов везикул, различающихся покрывающими их белками. Бо́льшая часть везикул образуется в специальных участках мембраны. Когда везикула отпочковывается от мембраны, её обращённая к цитозолю поверхность несёт специальные белки. Каждая мембрана, к которой движется везикула, несёт особые маркеры на своей цитоплазматической стороне. Маркер соответствует белкам, которыми окружена везикула. Когда везикула находит свою мембрану, они сливаются[25].
Известно три хорошо изученных типа везикул: клатрин-окаймлённые везикулы, COPI[англ.]-окаймлённые везикулы и COPII[англ.]-окаймлённые везикулы. Каждый тип выполняет определённые функции внутри клетки. Например, клатрин-окаймлённые везикулы переносят вещества между аппаратом Гольджи и плазматической мембраной. COPI- и COPII-окаймлённые везикулы часто используются для транспорта веществ между аппаратом Гольджи и ЭПР[25].
Вакуоли
Вакуоли, как и везикулы, представляют собой мембраносвязанные внутриклеточные мешочки. Они крупнее везикул и могут иметь различные специфические функции. Функции вакуолей в растительных и животных клетках различаются. В
У животных вакуоли участвуют в процессах экзоцитоза и эндоцитоза. Вещества, которые должны попасть из внеклеточной среды внутрь клетки, окружаются плазматической мембраной и переносятся в вакуоль. Существует два типа эндоцитоза: фагоцитоз (поглощение твёрдых частиц) и пиноцитоз (поглощение капель жидкости). При фагоцитозе клетка может поглощать и такие крупные частицы, как бактерии[28].
Лизосомы
Лизосомы — это органеллы, содержащие гидролитические ферменты для внутриклеточного пищеварения. Главной функцией лизосом является расщепление молекул, поглощённых клеткой, а также износившихся клеточных органелл. Ферменты лизосом — кислые гидролазы, для оптимальной их работы необходима кислая среда. Лизосомы обеспечивают такую среду, поддерживая внутри себя рН 5,0[29]. Если лизосома разрушится, то вышедшие из неё ферменты не будут очень активны из-за нейтрального рН цитозоля. Однако если в клетке одновременно разрушится много лизосом, то она может переварить сама себя.
Лизосомы осуществляют внутриклеточное пищеварение в ходе фагоцитоза, сливаясь с вакуолью и высвобождая в неё свои ферменты. В результате этого процесса сахара́, аминокислоты и другие мономеры выходят в цитозоль и становятся питательными веществами клетки. Лизосомы также используют свои ферменты для разрушения обветшавших органелл клетки в процессе аутофагии. Лизосомы заключают в себя износившуюся органеллу и подвергают её воздействию своих гидролитических ферментов. Образующиеся органические мономеры выходят в цитозоль для повторного использования. Наконец, последняя функция лизосом — участие в расщеплении клеткой самой себя в ходе автолиза[30].
Апикальное тельце
Апикальное тельце, или Spitzenkörper — компонент эндомембранной системы, встречающийся только у грибов, он участвует в росте концов грибных гиф. Это фазово-тёмное тельце, которое состоит из скопления мембраносвязанных везикул, содержащих компоненты клеточной стенки, и служит для высвобождения их между аппаратом Гольджи и плазматической мембраной. Апикальное тельце подвижно и при движении вперёд вызывает рост кончика гифы[7].
Плазматическая мембрана

Плазматическая мембрана — это фосфолипидный бислой, отделяющий клетку от окружающей среды и регулирующий транспорт молекул и
Плазматическая мембрана выполняет несколько функций. Среди них транспорт питательных веществ внутрь клетки, свободный выход отходов метаболизма, предотвращение попадания в клетку ненужных веществ, препятствие для выхода нужных молекул из клетки, поддержание рН цитозоля и его
Кроме вышеперечисленных общих функций, у
Эволюция
Происхождение эндомембранной системы связано с происхождением эукариот как таковых и происхождению эукариот в связи с эндосимбиозом, положившим начало митохондриям[33]. Большинство современных гипотез утверждают, что эндомембранная система происходит из наружной мембраны везикул, отпочковывавшихся от эндосимбиотической митохондрии[34]. Эта модель происхождения эндомембранной системы требует минимального количества событий в происхождении эукариот и объясняет многие связи митохондрий с другими компартментами клетки[35].
Примечания
- ↑ Smith, A. L. Oxford dictionary of biochemistry and molecular biology (англ.). — Oxford [Oxfordshire]: Oxford University Press, 1997. — P. 206. — ISBN 0-19-854768-4.
- ↑ 1 2 Davidson, Michael. The Nuclear Envelope . Molecular Expressions. Florida State University (2005). Дата обращения: 9 декабря 2008. Архивировано 16 мая 2019 года.
- ↑ Davidson, Michael. The Endoplasmic Reticulum . Molecular Expressions. Florida State University (2005). Дата обращения: 9 декабря 2008. Архивировано 15 мая 2019 года.
- ↑ Graham, Todd R. Eurekah Bioscience Collection Cell Biology (англ.). — University of New South Wales and Landes Bioscience, 2000. — ISBN 0-7334-2108-3. Архивировано 20 июня 2021 года.
- ↑ Lodish, Harvey. Section 5.4 Organelles of the Eukaryotic Cell . Molecular Cell Biology. W. H. Freeman and Company (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Cooper, Geoffrey. The Mechanism of Vesicular Transport . The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ ]
- ]
- ]
- ↑ Campbell Neil A., Jane B. Reece. Biology (неопр.). — 6th. — Benjamin Cummings[англ.], 2002. — ISBN 0-8053-6624-5.
- ↑ Morré DJ, Mollenhauer HH. The endomembrane concept: a functional integration of endoplasmic reticulum and Golgi apparatus. In Dynamic Aspects of Plant infrastructure / A. W. Robards. — London, New York: McGraw-Hill, 1974. — P. 84—137.
- ]
- ↑ Voelker D. R. Organelle biogenesis and intracellular lipid transport in eukaryotes. (англ.) // Microbiological reviews. — 1991. — Vol. 55, no. 4. — P. 543—560. — PMID 1779926.
- ↑ Childs, Gwen V. Nuclear Envelope . UTMB (2003). Дата обращения: 28 сентября 2008. Архивировано 20 июня 2006 года.
- ↑ Cooper, Geoffrey. The Nuclear Envelope and Traffic between the Nucleus and Cytoplasm . The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Alberts, Walter. Nuclear Pore Complexes Perforate the Nuclear Envelope . Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ 1 2 3 4 5 6 7 8 9 Cooper, Geoffrey. The Endoplasmic Reticulum . The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ]
- ↑ 1 2 3 4 5 6 7 8 9 Alberts, Walter. Membrane-bound Ribosomes Define the Rough ER . Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ]
- ↑ Rothman J. E. The golgi apparatus: two organelles in tandem. (англ.) // Science (New York, N.Y.). — 1981. — Vol. 213, no. 4513. — P. 1212—1219. — PMID 7268428.
- ↑ Alberts, Walter. Transport from the ER through the Golgi Apparatus . Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Cooper, Geoffrey. The Golgi Apparatus . The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Lodish, Harvey. Section 17.10 Molecular Mechanisms of Vesicular Traffic . Molecular Cell Biology. W. H. Freeman and Company (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ 1 2 Alberts, Walter. The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity . Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Alberts, Walter. Plant and Fungal Vacuoles Are Remarkably Versatile Lysosomes . Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Lodish, Harvey. Plant Vacuoles Store Small Molecules and Enable the Cell to Elongate Rapidly . Molecular Cell Biology. W. H. Freeman and Company (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Cooper, Geoffrey. Endocytosis . The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Alberts, Walter. Transport from the Trans Golgi Network to Lysosomes . Molecular Biology of the Cell 4th edition. Garland Science (2002). Дата обращения: 9 декабря 2008. Архивировано 10 апреля 2020 года.
- ↑ Cooper, Geoffrey. Lysosomes . The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ 1 2 Cooper, Geoffrey. Structure of the Plasma Membrane . The Cell: A Molecular Approach. Sinauer Associates, Inc (2000). Дата обращения: 9 декабря 2008. Архивировано 20 июня 2021 года.
- ↑ Lodish, Harvey. Section 5.3. Biomembranes: Structural Organization and Basic Functions . Molecular Cell Biology. W. H. Freeman and Company (2000). Дата обращения: 9 декабря 2008.
- ]
- ]
- ]
Эта статья входит в число хороших статей русскоязычного раздела Википедии. |