Эта статья входит в число хороших статей

Пероксисома

Материал из Википедии — свободной энциклопедии
Схема строения пероксисомы. Показана ограничивающая органеллу мембрана (жёлто-зелёная) и кристаллоподобное ядро (фиолетовое)

Пероксисо́ма

белков в пероксисомы происходит при участии короткой сигнальной последовательности
.

История изучения

Как отдельная структура пероксисома впервые была описана в 1954 году Йоханнесом Родином (

уратоксидаза, каталаза, оксидаза D-аминокислот. Оказалось, что в пероксисомах молекулярный кислород под действием оксидазы превращается в пероксид водорода, который каталаза разлагает на воду и кислород. Это открытие позволило де Дюву назвать эту органеллу «пероксисомой». Параллельно другая группа исследователей во главе с Гарри Биверсом[англ.] (англ. Harry Beevers) показала, что глиоксилатный цикл в прорастающих семенах протекает в неизвестных доселе цитоплазматических частицах, которые они назвали «глиоксисомами». Глиоксисомы по своим свойствам очень напоминали пероксисомы. Было установлено, что в глиоксисомах также протекает β-окисление жирных кислот. Позднее было открыто, что этот процесс происходит и в пероксисомах печени крысы[1]. В настоящее время глиоксисомы считают видоизменёнными пероксисомами[2]
.

Морфология и локализация

Пероксисомы в кардиомиоците крысы

Пероксисомы представляют собой небольшие мембранные пузырьки размером 0,3—1,5

мкм, содержащие внутри гранулярный матрикс. В центре матрикса находится сердцевина, или нуклеоид. В этой зоне нередко (особенно в печёночных клетках) видны кристаллоподобные структуры, состоящие из регулярных фибрилл, или трубочек[3]
.

Пероксисомы присутствуют во всех эукариотических клетках[4]. Размер, количество и белковый состав пероксисом различен в клетках различных тканей, а также может меняться под действием внешнего стимула[5]. Например, у дрожжей, растущих на сахаре, пероксисомы маленькие. Однако у дрожжей, растущих на метаноле, имеются крупные пероксисомы, окисляющие метанол. Если дрожжи выращиваются на жирных кислотах, то они имеют большие пероксисомы, в которых интенсивно протекает β-окисление жирных кислот[6]. У высших позвоночных животных особенно богаты пероксисомами клетки печени и почек. Так, каждый гепатоцит крысы содержит от 70 до 100 пероксисом[7].

Функции

Функции пероксисом чрезвычайно разнообразны в разных группах организмов. Однако практически у всех видов пероксисомы содержат фермент каталазу, а также ферменты β-окисления жирных кислот[5]. Ниже рассмотрены известные функции пероксисом.

Окисление органических веществ

В пероксисоме обычно присутствуют ферменты, использующие

молекулярный кислород для отщепления атомов
водорода от некоторых органических субстратов () с образованием пероксида водорода ():

[8].

К числу таких ферментов можно отнести различные оксидазы: уратоксидаза, оксидаза D-аминокислот[7].

Каталаза использует образующуюся для окисления множества субстратов, например, фенолов, муравьиной кислоты, этанола и формальдегида:

.

С помощью этой реакции в печени и почках происходит обезвреживание различных ядовитых веществ, находящихся в кровотоке. Около 25 % потребляемого этанола пероксисомы окисляют до ацетальдегида[8].

Когда в клетке накапливается слишком много пероксида водорода, каталаза переводит его в воду в следующей реакции:

[8].

Окисление жирных кислот

В пероксисомах всех организмов протекает β-окисление жирных кислот. На каждом этапе этого процесса алкильная цепь жирной кислоты укорачивается на два атома углерода с высвобождением ацетил-КоА. Далее пероксисомы экспортируют его в цитозоль. У млекопитающих β-окисление протекает не только в пероксисомах, но и в митохондриях, однако у дрожжей и растений этот процесс проходит только в пероксисомах[8].

В пероксисомах также протекает α-окисление жирных кислот, которые не могут подвергаться β-окислению из-за наличия метильной группы у β-атома углерода[9].

Другие функции

Глиоксисома

У животных в пероксисомах протекают первые реакции биосинтеза плазмалогенов — самых распространённых

изопреноидов и холестерина у животных[10]
.

На пероксисомы приходится около 10 % активности двух ферментов

NADPH вне пероксисомы[10]
.

Показано, что в пероксисомах локализуется белок NDR2 —

.

Предполагается, что пероксисомы играют важную роль в регуляции системного воспаления, однако функциональная роль этих органелл в воспалительном ответе, который опосредован миелоидными иммунными клетками, в значительной мере неизвестна[12].

В листьях растений пероксисомы участвуют в процессе

гормонов[14]
.

У растений и некоторых других организмов в видоизменённых пероксисомах — глиоксисомах — заключены ферменты глиоксилатного пути. В ходе этого процесса ацетил-КоА, образующийся при окислении

цикла лимонной кислотысукцинат, которое выводится в цитозоль и далее используется для синтеза сахаров[15]
.

У некоторых простейших (например, трипаносом) имеется особая мембраносвязанная органелла, содержащая ферменты гликолизагликосома. Предполагается, что она происходит от пероксисомы[16].

У некоторых грибов, таких как

сумчатых грибов, служащие для закупорки пор повреждённых клеток и отделяющие их от нормальных клеток, являются видоизменёнными пероксисомами[17]
.

Импорт белков

Поскольку пероксисомы не содержат собственной ДНК и рибосом, все их белки должны импортироваться внутрь пероксисом из цитозоля. Некоторые белки пероксисом направляются в них с участием

АТФ, и в нём принимают участие около 23 различных белков, называемых пероксинами[англ.]. Белки с PTS1 позиционируются на пероксисомах с участием рецептора Pex5p, а с PTS2 — Pex7p. У млекопитающих адресование белков с PTS2 происходит с участием белка, который представляет собой вариант альтернативного сплайсинга Pex5p[18]. Комплекс из 6 разных пероксинов образует мембранный транслокатор[19]
.

Процесс импорта белков пероксисом коренным образом отличается от транслокации белков в ЭПР, митохондрии и хлоропласты в том отношении, что белки пероксисом импортируются после того, как они приобрели в цитозоле нативную или даже олигомерную структуру. В этом отношении транспорт белков в пероксисомы напоминает перенос белков в ядро. При транспорте в ядро и в перокисому рецептор, узнающий сигнальную последовательность, переносится с субстратом через мембрану, потом рецептор отделяется и экспортируется в цитозоль для дальнейшего использования[20].

Биогенез

Механизм образования новых пероксисом в клетке является предметом дискуссий. Доподлинно неизвестно, возникают ли пероксисомы из ранее существующих путём их роста и деления (подобно митохондриям и пластидам), или же они образуются путём отщепления от

везикул — предшественников пероксисом. Отщепление от ЭПР этих везикул и их дальнейшее слияние приводит к образованию пероксисомы, которая импортирует оставшиеся пероксисомальные белки при помощи собственного аппарата импорта. Далее пероксисома может расти и делиться с образованием дочерних пероксисом[21]
.

В 2017 году была предложена новая модель образования пероксисом de novo. Известно, что пероксисомы и митохондрии функционируют совместно во многих

метаболических путях — таких, как β-окисление жирных кислот. Кроме того, в отсутствие пероксисом в клетках многие белки пероксины импортируются в митохондрии. В связи с этим предполагается, что пероксисомы представляют собой гибридный продукт слияния пре-пероксисомных везикул, отделившихся как от ЭПР, так и от митохондрий[22]
.

Насчёт происхождения пероксисом имеется ряд альтернативных гипотез. Поскольку пероксисомы разных организмов содержат ряд белков, одинаковых для всех, была предложена гипотеза

актинобактерий[24]. Впрочем, в последнее время эти гипотезы были опровергнуты[25][26]
.

Клиническое значение

Первым заболеванием, для которого была установлена связанная с пероксисомами причина, стал синдром Зельвегера[англ.]. У пациентов с синдромом Зельвегера нарушен процесс импорта белков в пероксисомы, что ведёт к тяжёлой пероксисомной недостаточности. Их клетки содержат «пустые» пероксисомы. Пациенты страдают от тяжёлых нарушений мозга, печени и почек и умирают вскоре после рождения. Одна форма заболевания вызвана мутацией в пероксине Pex2, а дефект N-концевого сигнала импорта вызывает более слабую форму заболевания[19].

С момента установления причин синдрома Зельвегера в 1973 году было получено много новых сведений о различных заболеваниях, вызванных нарушениями в функционировании пероксисом: к настоящему моменту выявлено 14 генов, мутации в которых приводят к пероксисомным расстройствам[англ.][27]. Их подразделяют на две группы: заболевания, вызванные нарушениями в работе одного фермента, и заболевания, связанные с биогенезом пероксисом. К первой группе относятся такие заболевания, как X-связанная адренолейкодистрофия[англ.] (ALD) и rhizomelic chondrodysplasia punctata[англ.] (RCDP) типов 2 и 3. У пациентов с X-связанной ALD накапливаются жирные кислоты с очень длинными алкильными цепями из-за мутации в ABC-переносчике[англ.] D1, который необходим для транспорта этих соединений внутрь пероксисом. RCDP типов 2 и 3 вызывается дефектами в двух ключевых ферментах биосинтеза плазмалогенов[28].

Ко второй группе относятся болезни, вызванные нарушениями в биогенезе пероксисом, поэтому они характеризуются более сложной

болезнь Рефсума[29]
.

Примечания

  1. Brocard et al., 2014, p. 3—4.
  2. Нельсон, Кокс, 2014, с. 213.
  3. Ченцов, 2005, с. 320.
  4. Альбертс и др., 2013, с. 1107.
  5. 1 2 Brocard et al., 2014, p. 4.
  6. Альбертс и др., 2013, с. 1108—1109.
  7. 1 2 Ченцов, 2005, с. 321.
  8. 1 2 3 4 5 Альбертс и др., 2013, с. 1108.
  9. Нельсон, Кокс, 2014, с. 250.
  10. ]
  11. ]
  12. ]
  13. Нельсон, Кокс, 2014, с. 420.
  14. ]
  15. Нельсон, Кокс, 2014, с. 212—213.
  16. ]
  17. Камзолкина О. В., Дунаевский Я. Е. Биология грибной клетки. — М.: Товарищество научных изданий КМК, 2015. — С. 130—131, 135. — 239 с. — ISBN 978-5-9906564-1-3.
  18. Кассимерис и др., 2016, с. 349.
  19. 1 2 Альбертс и др., 2013, с. 1110.
  20. Кассимерис и др., 2016, с. 349—350.
  21. Альбертс и др., 2013, с. 1110—1111.
  22. ]
  23. ]
  24. ]
  25. ]
  26. ]
  27. ]
  28. Brocard et al., 2014, p. 5.
  29. Brocard et al., 2014, p. 5—6.

Литература