216 Kleopatra

Source: Wikipedia, the free encyclopedia.
216 Kleopatra
U–B = 0.238[4]
7.30[4][9][11][10][14]
7.35±0.02[5][15][17] · 7.45[13]

216 Kleopatra is a large

Pola Observatory, in what is now Pula, Croatia, and was named after Cleopatra, the famous Egyptian queen.[1] It has two small minor-planet moons
which were discovered in 2008 and later named Alexhelios and Cleoselene.

Orbit and classification

Kleopatra is a non-

semi-major axis of 2.79 AU). Its orbit has an eccentricity of 0.25 and an inclination of 13° with respect to the ecliptic.[4] The body's observation arc begins at Leipzig Observatory (534) on 20 April 1880, ten days after to its official discovery observation at Pola Observatory.[1]

Physical characteristics

Size and shape

Kleopatra is a relatively large asteroid, with a mean (volume-equivalent) diameter of 120±2 km[8][20] and an unusually elongate shape.

Animated view of Kleopatra as viewed from 20° N latitude.
Animated view of Kleopatra as viewed from 20° S latitude.

The initial mapping of its elongated shape was indicated by stellar occultation observations from eight distinct locations on 19 January 1991.[21] Subsequent observations with the ESO 3.6 m Telescope at La Silla, run by the European Southern Observatory, were interpreted to show a double source with two distinct lobes of similar size.[22] These results were disputed when radar observations at the Arecibo Observatory showed that the two lobes of the asteroid are connected, resembling the shape of a ham-bone. The radar observations provided a detailed shape model that appeared on the cover of Science Magazine.[18] Later models suggested that Kleopatra was more elongate and the most recent models using radar delay-Doppler imaging, adaptive optics, and stellar occultations provide dimensions of 267 × 61 × 48 km.[23][8][20]

Satellites

In 1988 a search for satellites or dust orbiting this asteroid was performed using the

moons orbiting Kleopatra.[25] In February 2011, the minor-planet moons were named Alexhelios /ˌælɪksˈhliɒs/ (outer) and Cleoselene /ˌklsɪˈln/ (inner), after Cleopatra's children Alexander Helios and Cleopatra Selene II.[1] The outer and inner satellites are about 8.9 ± 1.6 and 6.9 ± 1.6 km in diameter, with periods of 2.7 and 1.8 days, respectively.[26]

VLT-SPHERE
in 2017

Mass, density, and composition

The presence of two moons provides a way to estimate Kleopatra's mass, although its irregular shape makes the orbital modeling a challenge.[26] The most recent adaptive-optics observations and modeling provides a mass of Kleopatra of (1.49±0.16)×10−12 M, or (2.97±0.32)×1018 kg, which is significantly lower than previously thought.[12] When combined with the best volume estimate for Kleopatra, this indicates a bulk density of 3.38±0.50 g/cm3.[20]

These recent bulk density results call into question the canonical view of Kleopatra as a pure metallic object.[18] Kleopatra's radar albedo suggests a high metal content in the southern hemisphere, but is similar to the more common S- and C-class asteroids along the equator.[8] One way to reconcile these observations is to hypothesize that Kleopatra is a rubble-pile asteroid with significant porosity in dynamic equilibrium.[20]

Origin

Size comparison of asteroid Kleopatra with northern Italy

One possible origin that explains Kleopatra's shape, rotation, and moons is that it was created by an oblique impact perhaps 100 million years ago. The increased rotation would have elongated the asteroid and caused Alexhelios to split off. Cleoselene may have split off later, around 10 million years ago. Kleopatra is a

contact binary – if it were spinning much faster, the two lobes would separate from each other, making a true binary system.[12][20]

See also

References

  1. ^ a b c d e "216 Kleopatra". Minor Planet Center. Retrieved 22 April 2017.
  2. ^ "Cleopatra". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 26 January 2020.
  3. .
  4. ^ a b c d e f g h "JPL Small-Body Database Browser: 216 Kleopatra" (2016-09-20 last obs.). Jet Propulsion Laboratory. Archived from the original on 23 April 2017. Retrieved 22 April 2017.
  5. ^ a b "LCDB Data for (216) Kleopatra". Asteroid Lightcurve Database (LCDB). Retrieved 22 April 2017.
  6. ^ a b "Asteroid 216 Kleopatra". Small Bodies Data Ferret. Retrieved 24 October 2019.
  7. ^ a b c d e P. Vernazza et al. (2021) VLT/SPHERE imaging survey of the largest main-belt asteroids: Final results and synthesis. Astronomy & Astrophysics 54, A56
  8. ^ a b c d e f g h i Shepard et al (2018) A revised shape model of asteroid (216) Kleopatra, Icarus 311, 197-209
  9. ^
    S2CID 46350317
    . Retrieved 22 April 2017.
  10. ^ .
  11. ^ . Retrieved 22 October 2019.
  12. ^ .
  13. ^ . Retrieved 22 April 2017.
  14. ^ .
  15. ^ . Retrieved 22 April 2017.
  16. . Retrieved 22 April 2017.
  17. . Retrieved 22 April 2017.
  18. ^ . Retrieved 21 March 2018.
  19. ^ Descamps, P. (2015). "Dumb-bell-shaped equilibrium figures for fiducial contact binary asteroids and EKBOs". Icarus. 245: 64–79.
    S2CID 119272485
    .
  20. ^ . Retrieved 13 October 2021.
  21. . Retrieved 13 October 2021.
  22. ^ Marchis, F. (13 November 1999). "(216) Kleopatra". Central Bureau for Astronomical Telegrams. Retrieved 21 March 2018.
  23. ^ Hanuš, J.; et al. (2017). "Volumes and bulk densities of forty asteroids from ADAM shape modeling". Astronomy and Astrophysics. 601: 41.
    S2CID 119432730
    .
  24. . Retrieved 21 March 2018.
  25. ^ Marchis, Franck (2 October 2008). "Two Companions Found Near Dog-bone Asteroid". Space.com. Retrieved 20 March 2018.
  26. ^
    S2CID 234777860
    . Retrieved 13 October 2021.

External links