353 (number)
Appearance
| ||||
---|---|---|---|---|
Cardinal | three hundred fifty-three | |||
Ordinal | 353rd (three hundred fifty-third) | |||
Factorization | prime | |||
Prime | 71st | |||
Greek numeral | ΤΝΓ´ | |||
Roman numeral | CCCLIII, cccliii | |||
Binary | 1011000012 | |||
Ternary | 1110023 | |||
Senary | 13456 | |||
Octal | 5418 | |||
Duodecimal | 25512 | |||
Hexadecimal | 16116 |
353 (three hundred [and] fifty-three) is the
354. It is a prime number
.
In mathematics
353 is the 71st prime number, a
Eisenstein prime.[6]
In connection with
In a seven-team
strongly connected tournaments on seven nodes.[10]
353 is one of the solutions to the stamp folding problem: there are exactly 353 ways to fold a strip of eight blank stamps into a single flat pile of stamps.[11]
353 in Mertens Function returns 0.[12]
353 is an index of a prime Lucas number.[13]
References
- ^ Sloane, N. J. A. (ed.). "Sequence A002385 (Palindromic primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000928 (Irregular primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006450 (Primes with prime subscripts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Chen prime". mathworld.wolfram.com.
- ^ "Proth prime". mathworld.wolfram.com.
- ^ "Eisentein prime". mathworld.wolfram.com.
- ^ Sloane, N. J. A. (ed.). "Sequence A003294 (Numbers n such that n4 can be written as a sum of four positive 4th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- MR 0329184.
- MR 0720650.
- ^ Sloane, N. J. A. (ed.). "Sequence A051337 (Number of strongly connected tournaments on n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001011 (Number of ways to fold a strip of n blank stamps)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A028442 (Numbers k such that Mertens's function M(k) (A002321) is zero)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001606 (Indices of prime Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.