Ankylopollexia

Source: Wikipedia, the free encyclopedia.

Ankylopollexia
Temporal range:
Ma
Mantellisaurus skeleton, Natural History Museum, London
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Ornithischia
Clade: Ornithopoda
Clade:
Dryomorpha
Clade: Ankylopollexia
Sereno, 1986
Subgroups

Ankylopollexia is an

synapomorphic feature of a conical thumb spine defines the clade.[2]

First appearing around 156 million years ago, in the

Size

Size of three ankylopollexians (Edmontosaurus, Iguanodon, and Camptosaurus) compared to other ornithopods

Ankylopollexians varied greatly in size over the course of their evolution.[citation needed]. Jurassic genus Camptosaurus was small, no more than 5 metres (16 ft) in length and half a tonne in weight.[4] The largest known ankylopollexian, dating to the late Campanian age (around 70 million years ago), belonged to the hadrosaurid family, and is named Shantungosaurus. It was around 14.7 metres (48 ft) to 16.6 metres (54 ft) in length and weighed, for the largest individuals, up to 16 tonnes (18 short tons).[5][6]

Life restoration of Iguanacolossus

Primitive ankylopollexians tended to be smaller as compared to the larger, more derived

hadrosaurs. There are, however, exceptions to this trend. A single track from a large ornithopod, likely a relative of Camptosaurus, was reported from the Lourinhã Formation, dating to the Jurassic in Portugal. The corresponding animal had an estimated hip height of around 2.8 metres (9.2 ft), much larger than the contemporary relative Draconyx.[7] The primitive styracosternan Iguanacolossus was named for its distinct robustness and large size, likely around 9 metres (30 ft) in length.[citation needed] Regarding hadrosaurs, one of the more basal members of Hadrosauroidea, the Chinese genus Bolong, is estimated to have been around 200 kilograms (440 lb).[8] Another exception of this trend is Tethyshadros, a more derived genus of Hadrosauroidea. Estimated to have weighed 350 kilograms (770 lb), Tethyshadros have been found only on certain islands in Italy. Its diminutive size is explained by insular dwarfism.[9] In addition a 44 cm scapula belonging to an ankylopollexian has been found in the lourinha formation[10]
the length of the scapula indicates an animal similar in size to camptosaurus.

Classification

Hand of Iguanodon, showing the distinctive thumb of the group

About 157 million years ago, Ankylopollexia and

phylogenetic definition was given: the last common ancestor of the species Camptosaurus dispar and Parasaurolophus walkeri and all its descendants.[citation needed
]

The cladogram below follows the phylogenetic analysis of Bertozzo et al. (2017).[12]

Ankylopollexia

Camptosaurus dispar

Owenodon hoggii

Styracosterna

Uteodon aphanoecetes

Cumnoria prestwichii

Cedrorestes crichtoni

Osmakasaurus depressus

Hippodraco scutodens

Theiophytalia kerri

Iguanacolossus fortis

Planicoxa venenica

Dakotadon lakotaensis

Lurdusaurus arenatus

Lanzhousaurus magnidens

NHMUK
R1831

Kukufeldia tilgatensis

Barilium dawsoni

Fukuisaurus tetoriensis

Proa valdearinnoensis

Iguanodon bernissartensis

Hadrosauroidea

Hypselospinus fittoni

Mantellisaurus atherfieldensis

NHMUK R3741 (cf. Mantellisaurus
)

Ouranosaurus nigeriensis

Altirhinus kurzanovi

Jinzhousaurus yangi

Ratchasimasaurus suranareae

Penelopognathus weishampeli

Equijubus normani

Xuwulong yueluni

Gongpoquansaurus mazongshanensis

Jintasaurus meniscus

Probactrosaurus gobiensis

Eolambia caroljonesa

Hadrosauromorpha

Palaeobiology

Brain

Brain endocast of an Iguanodon, created in 1897 from specimen NHMUK R2501

The

Claosaurus annectens (today referred to the genus Edmontosaurus[16]) was used by Othniel Charles Marsh to create a cast of the brain cavity. Some basics remarks were made, including the small size of the organ, but interpreting minute features of the organ was noted to be difficult.[17] The 1897 paper noted the similarity of the two endocasts.[15]

ornithischian dinosaurs as a whole. The brains of a large variety of taxa have been studied. John Ostrom, would, in 1961, provide what was then the most extensive and detailed review and work on hadrosaur neuro-anatomy. This area of hadrosaur study was in its infancy at this point, and only the species known today as Edmontosaurus annectens, Edmontosaurus regalis, and Gryposaurus notabilis (at that time thought to be a synonym of its relative Kritosaurus) had specimens suitable at the time to be examined (Lambeosaurus was listed as having a briefly described braincase, but this was a mistake originating in Lull and Wright (1942)).[18][19] Ostrom supported the view that the brains of hadrosaurs and other dinosaurs would've likely only filled a portion of the cranial cavity, therefore hindering the ability to learn from endocasts, but noted they were still useful. He noted, similar to Marsh, noted the small predicted size of the organ, but also that it was significantly developed. A number of similarities to the brains of modern reptiles were noted.[19]

A 1905 diagram showing the small size of an Edmontosaurus annectens brain (bottom; alongside that of Triceratops horridus, top) commented on in early sources

intraspecific behaviours as indicated by their acoustic and visual display structures.[20]

In a first for any terrestrial fossil

neural tissues seemed to be very tightly packed, indicating an EC closer to five (with hadrosaurs having even higher ECs), nearly matching that of the most intelligent non-avian theropods. Though it was noted this was in-line with their complex behaviour, as had been noted by Hopson, it was cautioned the dense packing may have been an artifact of preservation, and the original lower estimates were considered more accurate. Some of the complex behaviours ascribed can be seen to some extent in modern crocodilians, who fall near the original numbers.[13]

Endocast of an Amurosaurus brain in right lateral (A), dorsal (B), and ventral (C) views

The advent of

sauropods and other ornithischians, but different EQ estimates for theropods were cited, placing the hadrosaur numbers significantly below the majority of theropods. Additionally, the relative cerebral volume was only 30% in Amurosaurus, significantly lower than in Hypacrosaurus, closer to that of theropods like Tyrannosaurus, though still distinctly larger than previously estimated numbers for more primitive iguanodonts. This demonstrated a previously unrecognized level of variation in neuro-anatomy within Hadrosauridae.[21]

Palaeobiogeography

Life restoration of Camptosaurus

Ankylopollexians would in the Cretaceous become one of the most successful groups on the planet, being both widespread and numerous in nature.

Camptosaurus dispar, which dates to around the Callovian-Oxfordian, about 156-157 million years ago.[24]

References

  1. ^ .
  2. ^ a b Sereno, P.C. (1986). "Phylogeny of the bird-hipped dinosaurs (order Ornithischia)". National Geographic Research 2 (2): 234–56
  3. ^ Foster, J. (2007). Camptosaurus dispar. Jurassic West: The Dinosaurs of the Morrison Formation and Their World. Indiana University Press. p. 219-221
  4. ^ Paul, G.S., 2010, The Princeton Field Guide to Dinosaurs, Princeton University Press p. 284
  5. .
  6. ^ Zhao, X.; Li, D.; Han, G.; Hao, H.; Liu, F.; Li, L.; Fang, X. (2007). "Zhuchengosaurus maximus from Shandong Province". Acta Geoscientia Sinica 28 (2): 111–122. doi:10.1007/s10114-005-0808-x.
  7. ^ Mateus, Octávio; Milàn, Jesper (2008). "Ichnological evidence for giant ornithopod dinosaurs in the Upper Jurassic Lourinhã Formation, Portugal". Oryctos. 8: 47–52.
  8. ^ Wu Wen-hao, Pascal Godefroit, Hu Dong-yu (2010). "Bolong yixianensis gen. et sp. nov.: A new Iguanodontoid dinosaur from the Yixian Formation of Western Liaoning, China". Geology and Resources 19 (2): 127–133.
  9. ^ Dalla Vecchia, F. M. (2009). "Tethyshadros insularis, a new hadrosauroid dinosaur (Ornithischia) from the Upper Cretaceous of Italy". Journal of Vertebrate Paleontology 29 (4): 1100–1116.
  10. S2CID 146510209
    .
  11. .
  12. .
  13. ^ .
  14. .
  15. ^ .
  16. ^ .
  17. .
  18. ^ .
  19. ^ .
  20. .
  21. .
  22. .
  23. .
  24. ^ Carpenter, K. and Wilson, Y. (2008). "A new species of Camptosaurus (Ornithopoda: Dinosauria) from the Morrison Formation (Upper Jurassic) of Dinosaur National Monument, Utah, and a biomechanical analysis of its forelimb". Annals of the Carnegie Museum 76: 227–263. doi:10.2992/0097-4463(2008)76[227:ansoco]2.0.co;2.

External links