Blood–gas partition coefficient

Source: Wikipedia, the free encyclopedia.

Blood–gas partition coefficient, also known as Ostwald coefficient for blood–gas,

soluble the inhaled anesthetic is in blood compared to in air, the more it binds to plasma proteins in the blood and the higher the blood–gas partition coefficient
.

It is inversely related to

blood:gas partition coefficient
, the slower the rate of induction.

Newer anesthetics (such as desflurane) typically have smaller blood–gas partition coefficients than older ones (such as ether); this leads to faster onset of anesthesia and faster emergence from anesthesia once application of the anesthetic is stopped, which may be preferable in certain clinical scenarios.[3][4] If an anesthetic has a high coefficient, then a large amount of it will have to be taken up in the body's blood before being passed on to the fatty (lipid) tissues of the brain where it can exert its effect.

The potency of an anesthetic is associated with its lipid solubility, which is measured by its oil/gas partition coefficient.[5]

Minimum alveolar concentration (MAC) is defined as the alveolar concentration of anesthetic gas that prevents a movement response in half of subjects undergoing a painful (surgical) stimulus; simplified, it is the exhaled gas concentration required to produce anaesthetic effects – an inverse indicator of anesthetic gas potency.

Inhalational anaesthetics

Partition coefficients at 37 °C[6][7]
Anesthetic MAC (%) Blood/gas Oil/gas Brain/blood Muscle/blood Fat/blood
Nitrous oxide 105 0.47 1.4 1.1 1.2 2.3
Halothane 0.74 2.4 224 2.9 3.5 60
Isoflurane 1.15 1.4 97 2.6 4.0 45
Sevoflurane 2 0.65 42 1.7 3.1 48
Desflurane 5.8 0.45 18.7 1.3 2.0 27
Methoxyflurane 0.2 12
Enflurane 1.58 1.9

References

  1. ^ "Ostwald solubility coefficient". Medical Dictionary.com. Retrieved 14 February 2020.
  2. .
  3. .
  4. .
  5. .
  6. ^ Nagelhout, J. J. (2014). Pharmacokinetics of Inhalation Anesthetics. Nurse anesthesia (5th ed.). p. 79.
  7. ^ Morgan, G. E. (2013). Clinical Anesthesiology (5th ed.). p. 156.