Hamilton–Jacobi–Einstein equation

Source: Wikipedia, the free encyclopedia.

In general relativity, the Hamilton–Jacobi–Einstein equation (HJEE) or Einstein–Hamilton–Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in superspace, cast in the "geometrodynamics era" around the 1960s, by Asher Peres in 1962 and others.[1] It is an attempt to reformulate general relativity in such a way that it resembles quantum theory within a semiclassical approximation, much like the correspondence between quantum mechanics and classical mechanics.

It is named for

principle of least action in the ADM formalism
.

Background and motivation

Correspondence between classical and quantum physics

In classical analytical mechanics, the dynamics of the system is summarized by the action S. In quantum theory, namely non-relativistic quantum mechanics (QM), relativistic quantum mechanics (RQM), as well as quantum field theory (QFT), with varying interpretations and mathematical formalisms in these theories, the behavior of a system is completely contained in a complex-valued probability amplitude Ψ (more formally as a quantum state ket |Ψ⟩ - an element of a Hilbert space). Using the polar form of the wave function, so making a Madelung transformation:

the

reduced Planck constant ħ is the quantum of angular momentum. Substitution of this into the quantum general Schrödinger equation
(SE):

and taking the limit ħ → 0 yields the classical HJE:

which is one aspect of the correspondence principle.

Shortcomings of four-dimensional spacetime

On the other hand, the transition between quantum theory and general relativity (GR) is difficult to make; one reason is the treatment of space and time in these theories. In non-relativistic QM, space and time are not on equal footing; time is a parameter while

renormalizable in QFT.[3] Additionally, in GR particles move through curved spacetime with a deterministically known position and momentum at every instant, while in quantum theory, the position and momentum of a particle cannot be exactly known simultaneously; space x and momentum p, and energy E and time t, are pairwise subject to the uncertainty principles

which imply that small intervals in space and time mean large fluctuations in energy and momentum are possible. Since in GR

In any case, a four-dimensional curved spacetime continuum is a well-defined and central feature of general relativity, but not in quantum mechanics.

Equation

One attempt to find an equation governing the dynamics of a system, in as close a way as possible to QM and GR, is to reformulate the HJE in

four-dimensional spacetime dynamic in all four dimensions, as the EFEs are. The space has a metric (see metric space
for details).

The

t:

In this context gij is referred to as the "metric field" or simply "field".

General equation (free curved space)

For a free particle in curved "empty space" or "free space", i.e. in the absence of matter other than the particle itself, the equation can be written:[6][7][8]

where g is the

variational derivative rather than the ordinary derivative
. These derivatives correspond to the field momenta "conjugate to the metric field":

the rate of change of action with respect to the field coordinates gij(r). The g and π here are analogous to q and p = ∂S/∂q, respectively, in classical Hamiltonian mechanics. See canonical coordinates for more background.

The equation describes how

non-linear
in the metric because of the products of the metric components, and like the HJE it is non-linear in the action due to the product of variational derivatives in the action.

The quantum mechanical concept, that action is the phase of the wavefunction, can be interpreted from this equation as follows. The phase has to satisfy the principle of least action; it must be stationary for a small change in the configuration of the system, in other words for a slight change in the position of the particle, which corresponds to a slight change in the metric components;

the slight change in phase is zero:

(where d3r is the volume element of the volume integral). So the constructive interference of the matter waves is a maximum. This can be expressed by the superposition principle; applied to many non-localized wavefunctions spread throughout the curved space to form a localized wavefunction:

for some coefficients cn, and additionally the action (phase) Sn for each ψn must satisfy:

for all n, or equivalently,

Regions where Ψ is maximal or minimal occur at points where there is a probability of finding the particle there, and where the action (phase) change is zero. So in the EHJE above, each wavefront of constant action is where the particle could be found.

This equation still does not "unify" quantum mechanics and general relativity, because the semiclassical Eikonal approximation in the context of quantum theory and general relativity has been applied, to provide a transition between these theories.

Applications

The equation takes various complicated forms in:

See also

References

Notes

Further reading

Books

Selected papers