Isoquinoline

Source: Wikipedia, the free encyclopedia.

Isoquinoline
Isoquinoline molecule
C=black, H=white, N=blue
Isoquinoline molecule
C=black, H=white, N=blue
Names
Preferred IUPAC name
Isoquinoline[1]
Other names
Benzo[c]pyridine
2-benzazine
Identifiers
3D model (
JSmol
)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard
100.003.947 Edit this at Wikidata
EC Number
  • 204-341-8
UNII
  • InChI=1S/C9H7N/c1-2-4-9-7-10-6-5-8(9)3-1/h1-7H checkY
    Key: AWJUIBRHMBBTKR-UHFFFAOYSA-N checkY
  • InChI=1/C9H7N/c1-2-4-9-7-10-6-5-8(9)3-1/h1-7H
    Key: AWJUIBRHMBBTKR-UHFFFAOYAX
  • C1(C=NC=C2)=C2C=CC=C1
Properties
C9H7N
Molar mass 129.162 g·mol−1
Appearance Colorless oily liquid; hygroscopic platelets when solid
Density 1.099 g/cm3
Melting point 26–28 °C (79–82 °F; 299–301 K)
Boiling point 242 °C (468 °F; 515 K)
Acidity (pKa) pKBH+ = 5.14[2]
−83.9·10−6 cm3/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Isoquinoline is an individual chemical specimen - a

alkaloids such as papaverine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine.[3][4][5][6][7][8]

Properties

Isoquinoline is a colorless

organic solvents. It is also soluble in dilute acids
as the protonated derivative.

Being an

Lewis acids
, such as BF3.

Production

Isoquinoline was first isolated from coal tar in 1885 by Hoogewerf and van Dorp.[9] They isolated it by fractional crystallization of the acid sulfate. Weissgerber developed a more rapid route in 1914 by selective extraction of coal tar, exploiting the fact that isoquinoline is more basic than quinoline. Isoquinoline can then be isolated from the mixture by fractional crystallization of the acid sulfate.

Although isoquinoline derivatives can be synthesized by several methods, relatively few direct methods deliver the unsubstituted isoquinoline. The Pomeranz–Fritsch reaction provides an efficient method for the preparation of isoquinoline. This reaction uses a benzaldehyde and aminoacetoaldehyde diethyl acetal, which in an acid medium react to form isoquinoline.[10] Alternatively, benzylamine and a glyoxal acetal can be used, to produce the same result using the Schlittler-Müller modification.[11]

Pomeranz–Fritsch reaction

Several other methods are useful for the preparation of various isoquinoline derivatives.

In the Bischler–Napieralski reaction an β-phenylethylamine is acylated and cyclodehydrated by a Lewis acid, such as phosphoryl chloride or phosphorus pentoxide. The resulting 1-substituted 3,4-dihydroisoquinoline can then be dehydrogenated using palladium. The following Bischler–Napieralski reaction produces papaverine.

Illustration of steps in a synthesis of papaverine, including a Bischler-Naperialski reaction

The

Pictet–Gams reaction and the Pictet–Spengler reaction
are both variations on the Bischler–Napieralski reaction. A Pictet–Gams reaction works similarly to the Bischler–Napieralski reaction; the only difference being that an additional hydroxy group in the reactant provides a site for dehydration under the same reaction conditions as the cyclization to give the isoquinoline rather than requiring a separate reaction to convert a dihydroisoquinoline intermediate.

Pictet–Gams reaction

In a Pictet–Spengler reaction, a condensation of a β-

a biological Pictect-Spengler synthesis:

.

Intramolecular aza Wittig reactions also afford isoquinolines.

Applications of derivatives

Isoquinolines find many applications, including:

Bisbenzylisoquinolinium compounds are compounds similar in structure to

tubocurarine. They have two isoquinolinium structures, linked by a carbon chain, containing two ester
linkages.

In the human body

dopaminergic neurons, leading to parkinsonism and Parkinson's disease. Several tetrahydroisoquinoline derivatives have been found to have the same neurochemical properties as MPTP. These derivatives may act as precursors to active neurotoxins.[12]

Other uses

Isoquinolines are used in the manufacture of

inhibitor.

See also

References

  1. .
  2. ^ a b Brown, H.C., et al., in Baude, E.A. and Nachod, F.C., Determination of Organic Structures by Physical Methods, Academic Press, New York, 1955.
  3. ^ Gilchrist, T.L. (1997). Heterocyclic Chemistry (3rd ed.). Essex, UK: Addison Wesley Longman.
  4. ^ Harris, J.; Pope, W.J. "isoQuinoline and the isoQuinoline-Reds" Journal of the Chemical Society (1922) volume 121, pp. 1029–1033.
  5. ^ Katritsky, A.R.; Pozharskii, A.F. (2000). Handbook of Heterocyclic Chemistry (2nd ed.). Oxford, UK: Elsevier.
  6. ^ Katritsky, A.R.; Rees, C.W.; Scriven, E.F. (Eds.). (1996). Comprehensive Heterocyclic Chemistry II: A Review of the Literature 1982–1995 (Vol. 5). Tarrytown, NY: Elsevier.
  7. ^ Nagatsu, T. "Isoquinoline neurotoxins in the brain and Parkinson's disease" Neuroscience Research (1997) volume 29, pp. 99–111.
  8. ^ O'Neil, Maryadele J. (Ed.). (2001). The Merck Index (13th ed.). Whitehouse Station, NJ: Merck.
  9. ^ S. Hoogewerf and W.A. van Dorp (1885) "Sur un isomére de la quinoléine" (On an isomer of quinoline), Recueil des Travaux Chemiques des Pays-Bas (Collection of Work in Chemistry in the Netherlands), vol.4, no. 4, pages 125–129. See also: S. Hoogewerf and W.A. van Dorp (1886) "Sur quelques dérivés de l'isoquinoléine" (On some derivatives of isoquinoline), Recueil des Travaux Chemiques des Pays-Bas, vol.5, no. 9, pages 305–312.
  10. .
  11. .
  12. .

External links

"Quinoline" . Encyclopædia Britannica. Vol. 22 (11th ed.). 1911. pp. 758–759.