Jasmonic acid

Source: Wikipedia, the free encyclopedia.
Jasmonic acid
Jasmonic acid
Ball-and-stick model of jasmonic acid
Names
Preferred IUPAC name
{(1R,2R)-3-Oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl}acetic acid
Other names
Jasmonic acid
(−)-Jasmonic acid
JA
(1R,2R)-3-Oxo-2-(2Z)-2-pentenylcyclopentylethanoic acid
{(1R,2R)-3-Oxo-2-[(2Z)-2-penten-1-yl]cyclopentyl}acetic acid
Identifiers
3D model (
JSmol
)
ChEBI
ChemSpider
UNII
  • InChI=1S/C12H18O3/c1-2-3-4-5-10-9(8-12(14)15)6-7-11(10)13/h3-4,9-10H,2,5-8H2,1H3,(H,14,15)/b4-3-/t9-,10-/m1/s1 ☒N
    Key: ZNJFBWYDHIGLCU-HWKXXFMVSA-N ☒N
  • InChI=1/C12H18O3/c1-2-3-4-5-10-9(8-12(14)15)6-7-11(10)13/h3-4,9-10H,2,5-8H2,1H3,(H,14,15)/b4-3-/t9-,10-/m1/s1
    Key: ZNJFBWYDHIGLCU-HWKXXFMVBZ
  • CC/C=C\C[C@@H]1[C@H](CCC1=O)CC(=O)O
Properties
C12H18O3
Molar mass 210.27 g/mol
Density 1.1 g/cm3
Boiling point 160 °C (320 °F; 433 K) at 0.7 mmHg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Jasmonic acid (JA) is an organic compound found in several plants including jasmine. The molecule is a member of the jasmonate class of plant hormones. It is biosynthesized from linolenic acid by the octadecanoid pathway. It was first isolated in 1957 as the methyl ester of jasmonic acid by the Swiss chemist Édouard Demole and his colleagues.[1]

Biosynthesis

Its biosynthesis starts from the fatty acid linolenic acid, which is oxygenated by lipoxygenase (13-LOX), forming a hydroperoxide. This peroxide then cyclizes in the presence of allene oxide synthase to form an allene oxide. The rearrangement of allene oxide to form 12-oxophytodienoic acid is catalyzed by the enzyme allene oxide cyclase. A series of β-oxidations results in 7-isojasmonic acid. In the absence of enzyme, this isojasmonic acid isomerizes to jasmonic acid.[2]

Pathway for biosynthesis of jasmonic acid via allene oxide intermediate. Highlighted is the pentadiene core that is the site of the reactions.

Function

The major function of JA and its various metabolites is regulating plant responses to abiotic and biotic stresses as well as plant growth and development.

Zea mays as well as the preliminary release of jasmonic acid shortly after being fed upon.[4] When plants are attacked by insects, they respond by releasing JA, which activates the expression of protease inhibitors, among many other anti-herbivore defense compounds. These protease inhibitors prevent proteolytic activity of the insects' digestive proteases or "salivary proteins",[5] thereby stopping them from acquiring the needed nitrogen in the protein for their own growth.[6] JA also activates the expression of Polyphenol oxidase which promotes the production of quinolines. These can interfere with the insect's enzyme production and decrease the nutrition content of the ingested plant.[7]

JA may have a role in pest control.

Zea mays, salicylic acid and JA are mediated by NPR1 (nonexpressor of pathogenesis-related genes1), which is essential in preventing herbivores from exploiting this antagonistic system.[13] Armyworms (Spodoptera caterpillars), through unknown mechanisms, are able to increase the activity of the salicylic acid pathway in maize, resulting in the depression of JA synthesis, but thanks to NPR1 mediation, JA levels aren't decreased by a significant amount.[13]

Derivatives

Jasmonic acid is also converted to a variety of derivatives including the ester methyl jasmonate. This conversion is catalyzed by the jasmonic acid carboxyl methyltransferase enzyme.[14] It can also be conjugated to amino acids in some biological contexts. Decarboxylation affords the related fragrance jasmone.

References