Polyphenol oxidase

Source: Wikipedia, the free encyclopedia.
Catechol oxidase
Identifiers
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

Polyphenol oxidase (PPO; also polyphenol oxidase i, chloroplastic), an

fruit browning, is a tetramer that contains four atoms of copper per molecule.[1]

PPO may accept

fruit browning
.

The amino acid tyrosine contains a single phenolic ring that may be oxidised by the action of PPOs to form o-quinone. Hence, PPOs may also be referred to as tyrosinases.[5]

Common foods producing the enzyme include

Lactuca sativa).[10]

Structure and function

PPO is listed as a

In plants, PPO is a

Enzyme nomenclature differentiates between monophenol oxidase enzymes (tyrosinases) and o-diphenol:oxygen oxidoreductase enzymes (catechol oxidases). The substrate preference of tyrosinases and catechol oxidases is controlled by the amino acids around the two copper ions in the active site.[15]

Distribution and applications

A mixture of monophenol oxidase and catechol oxidase enzymes is present in nearly all plant tissues, and can also be found in bacteria, animals, and fungi. In insects, cuticular polyphenol oxidases are present[16] and their products are responsible for desiccation tolerance.

Grape reaction product (2-S glutathionyl caftaric acid) is an oxidation compound produced by action of PPO on caftaric acid and found in wine. This compound production is responsible for the lower level of browning in certain white wines.

Plants make use of polyphenol oxidase as one in a suite of chemical defences against

parasites.[17]

Inhibitors

There are two types of inhibitor of PPO, those competitive to oxygen in the copper site of the enzyme and those competitive to phenolics.

ascorbic acid (vitamin C).[22]

Assays

Several assays were developed to monitor the activity of polyphenol oxidases and to evaluate the inhibition potency of polyphenol oxidase inhibitors. In particular, ultraviolet/visible (UV/Vis) spectrophotometry-based assays are widely applied.[23] The most common UV/Vis spectrophotometry assay involves the monitoring of the formation of o-quinones, which are the products of polyphenol oxidase-catalysed reactions, or the consumption of the substrate.[24] Alternative spectrophotometric method that involves the coupling of o-quinones with nucleophilic reagents such as 3-methyl-2-benzothiazolinonehydrazone hydrochloride (MBTH) was also used.[25] Other techniques, such as activity staining assays with the use of polyacrylamide gel electrophoresis,[26] tritium-based radioactive assays,[27] oxygen consumption assay,[28] and nuclear magnetic resonance (NMR)-based assay were also reported and used.[29]

Enzymatic browning

Polyphenol oxidase is an enzyme found throughout the plant and animal kingdoms,[30] including most fruits and vegetables.[31] PPO has importance to the food industry because it catalyzes enzymatic browning when tissue is damaged from bruising, compression or indentations, making the produce less marketable and causing economic loss.[30][31][32] Enzymatic browning due to PPO can also lead to loss of nutritional content in fruits and vegetables, further lowering their value.[10][30][31]

Because the substrates of these PPO reactions are located in the vacuoles of plant cells damaged mainly by improper harvesting, PPO initiates the chain of browning reactions.[32][33] Exposure to oxygen when sliced or pureed also leads to enzymatic browning by PPO in fruits and vegetables.[31] Examples in which the browning reaction catalyzed by PPO may be desirable include avocados, prunes, sultana grapes, black tea, and green coffee beans.[10][31]

In mango

In mangoes, PPO catalyzed enzymatic browning is mainly caused by sap burn which leads to skin browning.[citation needed] Catechol oxidase-type PPO is located in the chloroplasts of mango skin cells and its phenolic substrates in the vacuoles. Sap burn is therefore the initiating event of PPO in mango skin, as it breaks down cell compartments.[33] PPO is located in mango skin, sap and pulp, with highest activity levels in skin.[31]

In avocado

PPO in avocados causes rapid browning upon exposure to oxygen,

o-quinone products subsequently converted irreversibly into brown polymeric pigments (melanins).[34]

In apple

Present in the chloroplasts and mitochondria of all parts of an apple,[31] PPO is the major enzyme responsible for enzymatic browning of apples.[35] Due to an increase in consumer demand for pre-prepared fruits and vegetables, a solution for enzymatic browning has been a targeted area of research and new product development.[36] As an example, pre-sliced apples are an appealing consumer product, but slicing apples induces PPO activity, leading to browning of the cut surfaces and lowering their esthetic quality.[36] Browning also occurs in apple juices and purees when poorly handled or processed.[37]

Arctic apples, an example of genetically modified fruit engineered to reduce PPO activity, are a suite of trademarked apples that contain a non-browning trait derived by gene silencing to suppress the expression of PPO, thus inhibiting fruit browning.[38]

In apricot

Ascorbic acid/protease combinations constitute a promising practical anti-browning method as treated apricot purees preserved their color.[40]

In potato

Found in high concentrations in potato tuber peel and 1–2 mm of the outer cortex tissue, PPO is used in the potato as a defense against insect predation, leading to enzymatic browning from tissue damage.[citation needed] Damage in the skin tissue of potato tuber causes a disruption of cell compartmentation, resulting in browning. The brown or black pigments are produced from the reaction of PPO quinone products with amino acid groups in the tuber.[32] In potatoes, PPO genes are not only expressed in potato tubers, but also in leaves, petioles, flowers and roots.[32]

In walnut

In walnut (

monophenols, whereas jr PPO2 is more active towards diphenols.[41][42]

In black poplar

A monomeric catechol oxidase from Populus nigra converts caffeic acid to quinone and melanine at injured cells.[43][44]

Related enzymes

Prophenoloxidase is a modified form of the complement response found in some invertebrates, including insects, crabs and worms.[45]

Hemocyanin is homologous to the phenol oxidases (e.g. tyrosinase) since both enzymes sharing type copper active site coordination. Hemocyanin also exhibits PPO activity, but with slowed kinetics from greater steric bulk at the active site. Partial denaturation actually improves hemocyanin's PPO activity by providing greater access to the active site.[46]

Aureusidin synthase is homologous to plant polyphenol oxidase, but contains certain significant modifications.

Aurone synthase[47] catalyzes the formation of aurones. Aurone synthase purified from Coreopsis grandiflora shows weak tyrosinase activity against isoliquiritigenin, but the enzyme does not react with the classic tyrosinase substrates L-tyrosine and tyramine and must therefore be classified as catechol oxidase.[48]

See also

References

  1. ^ "Polyphenol Oxidase". Worthington Enzyme Manual. Retrieved 13 September 2011.
  2. S2CID 218831573
    .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. ^ .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. ^ .
  31. ^ .
  32. ^ .
  33. ^ .
  34. ^ Shelby T. Peres; Kelsey A. Oonk; Kasandra J. Riley (29 October 2019). "The Avocado Lab: An Inquiry-Driven Exploration of an Enzymatic Browning Reaction" (PDF). Rollins College, CourseSource. Retrieved 8 March 2020.
  35. ISSN 1097-0010
    .
  36. ^ .
  37. .
  38. ^ "Novel Food Information - Arctic Apple Events GD743 and GS784". Novel Foods Section, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa. 20 March 2015. Retrieved 5 November 2016.
  39. PMID 28812349
    .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .