Julius Plücker

Source: Wikipedia, the free encyclopedia.
Julius Plücker
]
Known for
Awards
University of Halle
Doctoral advisorChristian Ludwig Gerling[1]
Doctoral studentsFelix Klein[citation needed]
August Beer[citation needed]

Julius Plücker (16 June 1801 – 22 May 1868) was a German

analytical geometry and was a pioneer in the investigations of cathode rays that led eventually to the discovery of the electron. He also vastly extended the study of Lamé
curves.

Biography

Early years

Plücker was born at

Berlin he went to Paris in 1823, where he came under the influence of the great school of French geometers, whose founder, Gaspard Monge
, had only recently died.

In 1825 he returned to Bonn, and in 1828 was made professor of mathematics.

In the same year he published the first volume of his Analytisch-geometrische Entwicklungen, which introduced the method of "abridged notation".

In 1831 he published the second volume, in which he clearly established on a firm and independent basis

projective duality
.

Career

In 1836, Plücker was made professor of physics at University of Bonn. In 1858, after a year of working with vacuum tubes of his Bonn colleague Heinrich Geißler,[2] he published his first classical researches on the action of the magnet on the electric discharge in rarefied gases. He found that the discharge caused a fluorescent glow to form on the glass walls of the vacuum tube, and that the glow could be made to shift by applying an electromagnet to the tube, thus creating a magnetic field.[3] It was later shown that the glow was produced by cathode rays.

Plücker, first by himself and afterwards in conjunction with

Robert Wilhelm Bunsen and Gustav Kirchhoff
in announcing that the lines of the spectrum were characteristic of the chemical substance which emitted them, and in indicating the value of this discovery in chemical analysis. According to Hittorf, he was the first who saw the three lines of the hydrogen spectrum, which a few months after his death, were recognized in the spectrum of the solar protuberances.

In 1865, Plücker returned to the field of geometry and invented what was known as

homogeneous co-ordinates
introduced initially to embed the space of lines in projective space as a
quadric in . The construction uses 2×2
exterior power of the underlying vector space of dimension 4. It is now part of the theory of Grassmannians
(-dimensional subspaces of an -dimensional vector space ), to which the generalization of these co-ordinates to minors of the matrix of homogeneous coordinates, also known as Plücker coordinates, apply. The embedding of the Grassmannian into the projectivization of the th exterior power of is known as the
Plücker embedding
.

Bibliography

Awards

Plücker was the recipient of the Copley Medal from the Royal Society in 1866.[5]

See also

References

  1. ^ "Julius Plücker – The Mathematics Genealogy Project". www.mathgenealogy.org.
  2. ^ John Theodore Merz, A history of European thought in the nineteenth century (2). W. Blackwood and sons, 1912, pp. 189–190.
  3. ^ "Julius Plucker". chemed.chem.purdue.edu.
  4. .
  5. ^ "Julius Plücker – Biography". Maths History.

Bibliography

  • Born, Heinrich, Die Stadt Elberfeld. Festschrift zur Dreihundert-Feier 1910. J.H. Born, Elberfeld 1910
  • Giermann, Heiko, Stammfolge der Familie Plücker, in: Deutsches Geschlechterbuch, 217. Bd, A. Starke Verlag, Limburg a.d.L. 2004
  • Strutz, Edmund, Die Ahnentafeln der Elberfelder Bürgermeister und Stadtrichter 1708–1808. 2. Auflage, Verlag Degener & Co., Neustadt an der Aisch 1963
  • Gustav Karsten (1888), "Plücker, Julius", Allgemeine Deutsche Biographie (in German), vol. 26, Leipzig: Duncker & Humblot, pp. 321–323

External links