Macrophage migration inhibitory factor

Source: Wikipedia, the free encyclopedia.
MIF
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_002415

NM_010798

RefSeq (protein)

NP_002406
NP_002406.1

NP_034928

Location (UCSC)Chr 22: 23.89 – 23.9 MbChr 10: 75.7 – 75.7 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Macrophage migration inhibitory factor (MIF)
Identifiers
SymbolMIF
SCOP2
1mif / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Macrophage migration inhibitory factor (MIF), also known as glycosylation-inhibiting factor (GIF), L-dopachrome isomerase, or phenylpyruvate tautomerase is a

innate immunity.[7] The MIF protein superfamily also includes a second member with functionally related properties, the D-dopachrome tautomerase (D-DT).[8] CD74 is a surface receptor for MIF.[9]

Bacterial

Structure

Macrophage migration inhibitory factor assembles into a trimer composed of three identical subunits. Each of these monomers contain two antiparallel alpha helices and a four-stranded beta sheet. The monomers surround a central channel with 3-fold rotational symmetry.[12][13]

Response to injury

Cytokines play an important role in promoting wound healing and tissue repair. Cell injury results in MIF release which then interacts with CD74. MIF-CD74 signaling activates pro-survival and proliferative pathways that protects the host during injury.[14]

Enzymatic activity

MIF contains two motifs with catalytic activity. The first is a 27 amino acid motif located at the

reductase.[17]

Function

This gene encodes a lymphokine involved in cell-mediated immunity, immunoregulation, and inflammation.[18][19][20] MIF plays a role in the regulation of macrophage function in host defense through the suppression of anti-inflammatory effects of glucocorticoids.[20][21][22] This lymphokine and the JAB1 protein form a complex in the cytosol near the peripheral plasma membrane, which may indicate a role in integrin signaling pathways.[23]

Mechanism of action

MIF binds to

extracellular signal-regulated kinase phosphorylation.[25] In addition to ERK, stimulation of CD74 activates other signaling pathways such PI3K-Akt, NF-κB, and AMP-activated protein kinase (AMPK) pathways.[26]

Interactions

Macrophage migration inhibitory factor has been reported to

interact
with:

Clinical significance

MIF is a potential

drug target for sepsis, rheumatoid arthritis, and cancer.[40][41]

Parasite-produced MIF homologs

Parasite-Produced MIF Cytokine in Immune Evasion, Invasion, and Pathogenesis

Multiple protozoan parasites produce homologs MIF that have similar inflammatory functions to human MIF, and play a role in their pathogenesis, invasion and immune evasion.[42][43] A preclinical study showed that blocking parasite MIF improves outcome in severe protozoan infections.[44] Examples of protozoans with MIF homologs that have been reported:

References

  1. ^ a b c ENSG00000240972 GRCh38: Ensembl release 89: ENSG00000276701, ENSG00000240972Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000033307Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 2552447
    .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. ^ .
  21. .
  22. .
  23. ^ "Entrez Gene: MIF macrophage migration inhibitory factor (glycosylation-inhibiting factor)".
  24. S2CID 4321353
    .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .

External links