Methanesulfonyl chloride

Source: Wikipedia, the free encyclopedia.
Methanesulfonyl chloride
Names
Preferred IUPAC name
Methanesulfonyl chloride
Other names
Mesyl chloride
Identifiers
3D model (
JSmol
)
ChemSpider
ECHA InfoCard
100.004.279 Edit this at Wikidata
UNII
  • CS(Cl)(=O)=O
Properties
CH3SO2Cl
Molar mass 114.54 g·mol−1
Appearance colorless liquid
Odor Pungent, unpleasant[1]
Density 1.480 g/cm3
Melting point −32 °C (−26 °F; 241 K)[2]
Boiling point 161 °C (322 °F; 434 K) (at 730 mmHg)
Reacts[3][4]
Solubility Soluble in alcohol, ether and most organic solvents[5]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Lachrymator, highly toxic, corrosive
Flash point >110 °C (230 °F; 383 K)[6]
Related compounds
Other anions
Methanesulfonyl fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Methanesulfonyl chloride (mesyl chloride) is an

methanesulfonates and to generate the elusive molecule sulfene (methylenedioxosulfur(VI)).[7]

Preparation

It is produced by the reaction of

radical reaction
:

CH4 + SO2Cl2 → CH3SO2Cl + HCl

Another method of production entails chlorination of methanesulfonic acid with thionyl chloride or phosgene:

CH3SO3H + SOCl2 → CH3SO2Cl + SO2 + HCl
CH3SO3H + COCl2 → CH3SO2Cl + CO2 + HCl

Reactions

Methanesulfonyl chloride is a precursor to many compounds because it is highly reactive. It is an electrophile, functioning as a source of the "CH3SO2+" synthon.[7]

Methanesulfonates

Methanesulfonyl chloride is mainly used to give

alcohols in the presence of a non-nucleophilic base.[8] In contrast to the formation of toluenesulfonates from alcohols and p-toluenesulfonyl chloride in the presence of pyridine, the formation of methanesulfonates is believed to proceed via a mechanism wherein methanesulfonyl chloride first undergoes an E1cb elimination to generate the highly reactive parent sulfene (CH2=SO2), followed by attack by the alcohol and rapid proton transfer to generate the observed product. This mechanistic proposal is supported by isotope labeling experiments and the trapping of the transient sulfene as cycloadducts.[9]

Methanesulfonates are used as intermediates in

Lewis acid, oxime methanesulfonates undergo facile Beckmann rearrangement.[10]

Methanesulfonates are occasionally used as a protecting group for alcohols. They are stable to acidic conditions and is cleaved back to the alcohol using sodium amalgam.[11]

Methanesulfonamides

Methanesulfonyl chloride react with primary and secondary

dissolving metal reduction.[12]

Addition to alkynes

In the presence of copper(II) chloride, methanesulfonyl chloride will add across alkynes to form β-chloro sulfones.[13]

Formation of heterocycles

Upon treatment with a base, such as

sultones.[14]

Miscellaneous

Forming acyliminium ions from α-hydroxyamides can be done using methanesulfonyl chloride and a base, typically triethylamine.[15]

Safety

Methanesulfonyl chloride is highly toxic by inhalation,

lachrymator. It reacts with nucleophilic reagents (including water) in a strongly exothermic manner. When heated to decomposition point, it emits toxic vapors of sulfur oxides and hydrogen chloride.[16]

References

  1. ^ "Methanesulfonyl chloride".
  2. ^ "Methanesulfonyl chloride".
  3. ^ cameochemicals.noaa.gov/chemical/11835
  4. ^ "MSDS". Archived from the original on 2005-04-30. Retrieved 2013-01-14.
  5. ^ "Methanesulfonyl chloride".
  6. ^ "Methanesulfonyl chloride".
  7. ^
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. ^ "Methanesulfonyl chloride".