Ornithomimosauria
Ornithomimosaurs | |
---|---|
![]() | |
Collection of seven ornithomimosaurs, clockwise from top left: Gallimimus mongoliensis "
| |
Scientific classification ![]() | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Dinosauria |
Clade: | Saurischia |
Clade: | Theropoda |
Clade: | Maniraptoriformes
|
Clade: | †Ornithomimosauria Barsbold, 1976 |
Subgroups[9] | |
| |
Synonyms | |
|
Ornithomimosauria ("
Description
The skulls of ornithomimosaurs were small, with large eyes, above relatively long and slender necks. The most basal members of the taxon (such as
Feathers
Unambiguous evidence of feathers is known from
Classification
Named by
In the early 1990s, prominent paleontologists such as
The
Phylogeny
Ornithomimosauria has variously been used for the branch-based group of all dinosaurs closer to Ornithomimus than to birds, and in more restrictive senses. The more exclusive sense began to grow in popularity when the possibility arose that alvarezsaurids might fall under Ornithomimosauria if an inclusive definition were adopted. Another clade, Ornithomimiformes, was defined by Sereno (2005) as (Ornithomimus velox > Passer domesticus) and replaces the more inclusive use of Ornithomimosauria when alvarezsaurids or some other group are found to be closer relatives of ornithomimosaurs than maniraptorans, with Ornithomimosauria redefined to include dinosaurs closer to Ornithomimus than to alvarezsaurids. Gregory S. Paul has proposed that Ornithomimosauria might be a group of primitive, flightless birds, more advanced than Deinonychosauria and Oviraptorosauria.[17]
The cladogram below follows an analysis by Yuong-Nam Lee, Rinchen Barsbold, Philip J. Currie, Yoshitsugu Kobayashi, Hang-Jae Lee, Pascal Godefroit, François Escuillié & Tsogtbaatar Chinzorig. The analysis was published in 2014, and includes many ornithomimosaurian taxa.[9]
Coelurosauria |
| |||||||||||||||||||||||||||||||||||||||||||||||||||
The cladogram below follows the phylogenetic analysis by Scott Hartman and colleagues in 2019, which has included a vast majority of species and uncertain specimens, resulting in a novel phylogenetic arrangement.[18]
Ornithomimosauria |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Below is a cladogram by Serrano-Brañas et al., 2020, showing an analysis more in line with previous assumptions about ornithomimosaur classification.[19]
Ornithomimosauria | |
Palaeobiology
Ornithomimosaurs probably acquired most of their calories from plants. Many ornithomimosaurs, including primitive species, have been found with numerous gastroliths in their stomachs, characteristic of herbivores. Henry Fairfield Osborn suggested that the long, sloth-like "arms" of ornithomimosaurs may have been used to pull down branches on which to feed, an idea supported by further study of their strange, hook-like hands.[20] The sheer abundance of ornithomimids — they are the most common small dinosaurs in North America — is consistent with the idea that they were plant eaters, as herbivores usually outnumber carnivores in an ecosystem. However, they may have been omnivores that ate both plants and small animal prey.
Comparisons between the
Social behavior

Ornithomimosaurs are fairly well known for their gregarious life-styles. Some of the first findings of ornithomimosaur
Palaeopathology
A right second metatarsal belonging to a large-bodied ornithomimosaur weighing approximately 432 kg has been described from Mississippi with a "butterfly" fragment fracture pattern characteristic of blunt force trauma, likely as a result of an interaction with a predator or a violent bout of intraspecific competition.[26]
See also
References
- ^ a b Holtz, Thomas R. Jr. (2012) Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages, Winter 2011 Appendix.
- PMID 37679444.
- ^ Brownstein CD. (2016) Redescription of Arundel formation Ornithomimosaur material and a reinterpretation of Nedcolbertia justinhofmanni as an "Ostrich Dinosaur": Biogeographic implications. PeerJ Preprints 4:e2308v1 https://doi.org/10.7287/peerj.preprints.2308v1
- .
- ^ S2CID 201352476.
- .
- S2CID 134718338.
- Bibcode:2012bdec.book.....G.
- ^ S2CID 2986017.
- .
- ^ Last of the Dinosaurs: The Cretaceous Period
- .
- S2CID 2986017.
- S2CID 4464659.
- .
- ^ a b Sereno, P. C. (2005). Stem Archosauria—TaxonSearch Archived 2009-01-15 at the Wayback Machine [version 1.0, 2005 November 7]
- ^ Paul, G.S. (2002). Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds. Baltimore: Johns Hopkins University Press.
- PMID 31333906.
- S2CID 218968100.
- ^ Nicholls and Russell (1985).
- ^ Schmitz and Motani (2011)
- hdl:2246/355.
- ^ Kobayashi, Y.; Lü, J.-C. (2003). "A new ornithomimid dinosaur with gregarious habits from the Late Cretaceous of China" (PDF). Acta Palaeontologica Polonica. 48 (2): 235−259.
- ^ Chinzorig, T.; Kobayashi, Y.; Saneyoshi, M.; Tsogtbaatar, K.; Batamkhatan, Z.; Ryuji, T. (2017). "Multitaxic bonebed of two new ornithomimids (Theropoda, Ornithomimosauria) from the Upper Cretaceous Bayanshiree Formnation of southeastern Gobi desert, Mongolia". Journal of Vertebrate Paleontology. Program and Abstracts: 97.
- hdl:2115/74432.
- ISSN 1932-8486. Retrieved 27 September 2024 – via Wiley Online Library.
Further reading
- Barrett, P. M. (2005). "The diet of ostrich dinosaurs (Theropoda: Ornithomimosauria)". Palaeontology. 48 (2): 347–358. .
- British Museum (Natural History): Ostrich Dinosaurs
- Jacobsen, A.R. 2001. Tooth-marked small theropod bone: An extremely rare trace. p. 58-63. In: Mesozoic Vertebrate Life. Ed.s Tanke, D. H., Carpenter, K., Skrepnick, M. W. Indiana University Press.
- Li Xu; Yoshitsugu Kobayashi; Junchang Lü; Yuong-Nam Lee; Yongqing Liu; Kohei Tanaka; Xingliao Zhang; Songhai Jia; Jiming Zhang (2011). "A new ornithomimid dinosaur with North American affinities from the Late Cretaceous Qiupa Formation in Henan Province of China". Cretaceous Research. 32 (2): 213–222. ]
- Molnar, R. E., 2001, Theropod paleopathology: a literature survey: In: Mesozoic Vertebrate Life, edited by Tanke, D. H., and Carpenter, K., Indiana University Press, p. 337-363.
- Nicholls, E. L.; Russell, A. P. (1985). "Structure and function of the pectoral girdle and forelimb of Struthiomimus altus (Theropoda: Ornithomimidae)". Palaeontology. 28: 643–677.
- Norell, M. A.; Makovicky, P.; Currie, P. J. (2001). "The beaks of ostrich dinosaurs". Nature. 412 (6850): 873–874. S2CID 4313779.
- Schmitz, L. & Motani, R. (2011). "Nocturnality in Dinosaurs Inferred from Scleral Ring and Orbit Morphology". Science. 332 (6030): 705–8. S2CID 33253407.
- Sereno, P. C. 2005. Stem Archosauria—TaxonSearch [version 1.0, 2005 November 7]
- Tanke, D.H. and Brett-Surman, M.K. 2001. Evidence of Hatchling and Nestling-Size Hadrosaurs (Reptilia:Ornithischia) from Dinosaur Provincial Park (Dinosaur Park Formation: Campanian), Alberta, Canada. pp. 206–218. In: Mesozoic Vertebrate Life—New Research Inspired by the Paleontology of Philip J. Currie. Edited by D.H. Tanke and K. Carpenter. Indiana University Press: Bloomington. xviii + 577 pp.
- Turner, A.H.; Pol, D.; Clarke, J.A.; Erickson, G.M.; Norell, M. (2007). "Supporting online material for: A basal dromaeosaurid and size evolution preceding avian flight". Science. 317 (5843): 1378–1381. PMID 17823350. (supplement)