Tamir Gonen

Source: Wikipedia, the free encyclopedia.
Tamir Gonen
PhD
)
Awards
  • American Diabetes Association Career Development Award
  • Howard Hughes Medical Institute Early Career Scientist
  • A.L. Patterson Award of the American Crystallographic Association
Scientific career
FieldsMembrane protein
Structural biology
cryoEM
MicroED
InstitutionsHoward Hughes Medical Institute
University of California, Los Angeles
Janelia Research Campus
University of Washington
Harvard Medical School
Thesis Novel protein-protein interactions in the lens: a solution to the Mp20 enigma
Doctoral advisorEdward N. Baker
Joerg Kistler
Other academic advisorsThomas Walz
Websitehttps://cryoem.ucla.edu/

Tamir Gonen (born 1975) is an American structural biochemist and membrane biophysicist best known for his contributions to

Royal Society of New Zealand
.

Education

Gonen attended the University of Auckland in New Zealand and graduated with a Bachelor of Science double major in Inorganic Chemistry and Biological Sciences, followed by First Class Honors in Biological Sciences in 1998. He then obtained a Doctor of Philosophy in Biological Science in 2002 from the University of Auckland for research with by Edward N. Baker and Joerg Kistler.[1] Postdoctoral education was conducted at Harvard Medical School at the laboratory of Thomas Walz.

Research

Gonen's current research focuses on the structures and functions of medically important membrane proteins that are involved in homeostasis and method development in cryoEM, namely microcrystal electron diffraction (microED). He published the first atomic resolution structure determined by cryoEM detailing the structure of aquaporin-0 at 1.9Å resolution.[2]

Development of microcrystal electron diffraction

The Gonen laboratory spearheaded the use of electron diffraction for the determination of protein structure from 3D nano crystals in a frozen hydrated state.[3][4][5] The method termed microED was established in 2013 with a proof of principle paper published in eLife.[6] In 2014 continuous rotation MicroED was established and demonstrated.[7] In 2015 the first novel structure was determined by MicroED for the protein alpha-synuclein at 1.4Å resolution[8] in collaboration with David Eisenberg and in 2016 microED yielded 1Å resolution data from protein nanocrystals where the phase could be solved ab initio.[9] MicroED has been used for drug discovery,[10] determination of membrane proteins such as ion channels[11] materials[12] and small organic molecules studied in a frozen hydrated state[13][14] and extended to sub atomic resolution better than 0.8Å.[15]

Career

  • Postdoctoral fellow, Harvard medical School (2002–2005)
  • Assistant professor, University of Washington, Seattle (2005–2010)
  • Early career scientist, Howard Hughes Medical Institute (2009–2011)
  • Associate professor with tenure, University of Washington, Seattle (2011)
  • Group leader, Howard Hughes Medical Institute Janelia Research Campus (2011–2017)
  • Professor of biological chemistry and physiology, University of California Los Angeles, David Geffen School of Medicine (2017–Present)
  • Investigator, Howard Hughes Medical Institute (2017–Present)

Honors

  • First Class Honors in Biological Sciences (University of Auckland, 1998)
  • Career Development Award, American Diabetes Association (2009)
  • Member, Royal Society of New Zealand (2014)
  • Chair, Biophysical Society CryoEM subgroup (2018)
  • A.L. Patterson Award from the American Crystallographic Association (2023)

Memberships

2014 Royal Society of New Zealand

References

External links