Uranyl chloride

Source: Wikipedia, the free encyclopedia.
Uranyl chloride
Uranyl chloride
Names
IUPAC name
Dichlorodioxouranium
Other names
Uranium(VI), dichlorodioxy
Identifiers
3D model (
JSmol
)
ChemSpider
ECHA InfoCard
100.029.315 Edit this at Wikidata
EC Number
  • 232-246-1
UNII
  • hydrate: InChI=1S/2ClH.H2O.2O.U/h2*1H;1H2;;;/q;;;;;+2/p-2
    Key: DPJRXHIPGVVIJZ-UHFFFAOYSA-L
  • dihydrate: InChI=1S/2ClH.2H2O.2O.U/h2*1H;2*1H2;;;/q;;;;;;+2/p-2
    Key: FGKUZTMTIQYKJZ-UHFFFAOYSA-L
  • trihydrate: InChI=1S/2ClH.3H2O.2O.U/h2*1H;3*1H2;;;/q;;;;;;;+2/p-2
    Key: BYLGCROXFJTSJF-UHFFFAOYSA-L
  • [Cl-].O=[U+2]=O.[Cl-]
  • hydrate: O.O=[U+2]=O.[Cl-].[Cl-]
  • dihydrate: O.O.O=[U+2]=O.[Cl-].[Cl-]
  • trihydrate: O.O.O.O=[U+2]=O.[Cl-].[Cl-]
Properties
UO2Cl2
Molar mass 340.90
Melting point Decomposes
Boiling point Decomposes
Solubility in other solvents 320 @ 18C
Hazards
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Uranyl chloride refers to inorganic compounds with the formula UO2Cl2(H2O)n where n = 0, 1, or 3. These are yellow-colored salts.

Synthesis and structures

Structure of the molecular complex uranyl chloride, trihydrate (UO2Cl2(H2O)3). Color scheme: red = O, green = U, Cl.[1]

The hydrates are obtained by dissolving uranyl sulfate or uranyl acetate in hydrochloric acid followed by crystallization from concentrated solutions. Depending on the method of drying, one obtains the mono- or the trihydrate. The monohydrate is described as a yellow, sulfur-like powder. It is very hygroscopic.[2] The trihydrate is greenish-yellow. Both hydrates are fluorescent solids that are highly soluble in water.[3]

The anhydrous material can be obtained by the reaction of oxygen with uranium tetrachloride:

UCl4 + O2 → UO2Cl2 + Cl2

In terms of structures, all three of these compounds feature the uranyl center (trans-UO22+) bound to five additional ligands, which can include (bridging) chloride, water, or another uranyl oxygen.[4][5]

Reactions

The

aquo ligands can be replaced by a variety of donors, e.g. THF.[6]

Industrial importance

The company

solvent extraction
in a nitrate media.

References

  1. .
  2. .
  3. ^ F. Hein, S. Herzog (1963). "Uranyl Chloride". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2. NY, NY: Academic Press. p. 1439.
  4. .
  5. .
  6. .

External links