Анализ бесконечно малых
Анализ бесконечно малых — историческое название
Античность
В античный период появились некоторые идеи, которые в дальнейшем привели к интегральному исчислению, но в ту эпоху эти идеи не были развиты строгим, систематическим образом. Расчёты объёмов и площадей, являющиеся одной из целей интегрального исчисления, можно найти в
Средневековье
В XIV веке индийский математик Мадхава Сангамаграма и астрономо-математическая школа Керала ввели многие компоненты исчисления, такие как
Современная эпоха
"Анализ бесконечно-малых был первым достижением современной математики, и трудно переоценить его значение. Я думаю, что оно, больше, чем что-либо ещё, однозначно определяет отправную точку современной математики, а математический анализ, который является его логическим развитием, по-прежнему определяет наибольший технический прогресс в точном мышлении ". — Джон фон Нейман[6]
|
В Европе основополагающим трудом стал трактат
Формальное исследование исчисления бесконечно малых, которое Кавальери соединил с исчислением
Эти идеи были систематизированы в истинное исчисление бесконечно малых
Изобретение исчисления обычно приписывают обоим, и
, а Лейбниц разработал большую часть обозначений, используемых в исчислении сегодня. Основная проницательность, которую проявили как Ньютон, так и Лейбниц, заключалась в открытии законов дифференцирования и интегрирования, введении производных второго и более высоких порядков и введении понятия аппроксимации полиномов рядами. Во времена Ньютона основная теорема исчисления была уже известна.Когда Ньютон и Лейбниц впервые опубликовали свои результаты, в то время не было серьёзных разногласий по поводу приоритета математика (а, следовательно, и страны) на это новшество. Ньютон получил свои результаты первым, но Лейбниц первым опубликовал свои. Позже Ньютон стал утверждать, что Лейбниц украл его идеи из неопубликованных заметок, которыми Ньютон поделился с несколькими членами Королевского общества. Эта полемика отделяла англоговорящих математиков от своих континентальных коллег на протяжении многих лет, в ущерб английской математике. Тщательное изучение работ Лейбница и Ньютона показало, что они получили свои результаты независимо друг от друга, Лейбниц начинал с интегрирования, а Ньютон с дифференцирования. Сегодня разработка исчисления засчитывается как Ньютону, так и Лейбницу. Название новой дисциплины мы получили от Лейбница. Ньютон называл своё исчисление «методы производных».
Со времён Лейбница и Ньютона многие математики внесли свой вклад в дальнейшее развитие исчисления. Одной из первых наиболее полных работ по анализу конечных и бесконечно малых была книга, написанная в 1748 году Марией Гаэтаной Аньези.[9]
Основания
В математике основания относятся к строгому определению предмета, отталкиваясь от точных аксиом и определений. На начальном этапе развития исчисления использование
Несколько математиков, в том числе
В современной математике основы исчисления включаются в раздел
Введение пределов определило не единственный строгий подход к основанию исчисления. Альтернативой может быть, например,
Важность
Хотя некоторые идеи исчисления ранее были разработаны в
Дифференциальное исчисление применяется в расчётах, связанных со
Исчисление[уточнить] также используется для получения более точного представления о природе пространства, времени и движения. Веками математики и философы боролись с парадоксами, связанными с делением на ноль или нахождением суммы бесконечного ряда чисел. Эти вопросы возникают при изучении движения и вычислении площадей. Древнегреческий философ Зенон Элейский дал несколько известных примеров таких парадоксов. Исчисление предоставляет инструменты для разрешения этих парадоксов, в частности, пределы и бесконечные ряды.
Пределы и бесконечно малые величины
В XIX веке бесконечно малые были заменены пределами. Пределы описывают значение функции для некоторого входа с точки зрения его значения для соседнем входа. Они охватывают мелкомасштабные изменения, подобно как бесконечно малым, но используются для обычной системы вещественных чисел. В этой трактовке исчисление представляет собой набор методов для манипуляции некоторыми пределами. Бесконечно малые заменяются на очень небольшие числа, а бесконечно малые изменения функции находятся путём принятия предельного поведения при всё меньших и меньших числах. Пределы являются самым лёгким способом создать строгую основу для исчисления, и по этой причине они приняты в качестве стандартного подхода.
Нотация Лейбница
Введённые Лейбницем обозначения для производной выглядят так:
В ньютоновском подходе, основанном на пределах, символ следует интерпретировать не как частное от деления двух чисел, а как сокращённое обозначение для вычисленного выше предела. Лейбниц же стремился представить его как отношение двух бесконечно малых чисел: — дифференциала, то есть бесконечно малого изменения , и — бесконечно малого изменения , вызвавшего изменение [10].
Даже при представлении исчисления с использованием пределов, а не бесконечно малых, обозначение является общим для манипулирования символами, как если бы и были реальными числами. Хотя, чтобы избежать подобных манипуляций, такие обозначения иногда удобно использовать в выражении операции, как, например, это применяется при обозначении полной производной.
Примечания
- ↑ Morris Kline, Mathematical thought from ancient to modern times, Vol. I
- ↑ Archimedes, Method, in The Works of Archimedes ISBN 978-0-521-66160-7
- ↑ Dun, Liu; Fan, Dainian; Cohen, Robert Sonné. Chinese studies in the history and philosophy of science and technology (англ.) : journal. — Springer, 1966. — Vol. 130. — P. 279. — ISBN 0-792-33463-9. Архивировано 1 марта 2023 года., Chapter, p. 279 Архивная копия от 26 мая 2016 на Wayback Machine
- ↑ Zill, Dennis G.; Wright, Scott; Wright, Warren S. Calculus: Early Transcendentals (англ.). — 3. — Jones & Bartlett Learning[англ.], 2009. — P. xxvii. — ISBN 0-763-75995-3. Архивировано 1 марта 2023 года., Extract of page 27 Архивная копия от 21 апреля 2019 на Wayback Machine
- ↑ Indian mathematics . Дата обращения: 16 февраля 2012. Архивировано 3 июля 2006 года.
- ↑ von Neumann, J., «The Mathematician», in Heywood, R. B., ed., The Works of the Mind, University of Chicago Press, 1947, pp. 180—196. Reprinted in Bródy, F., Vámos, T., eds., The Neumann Compedium, World Scientific Publishing Co. Pte. Ltd., 1995, ISBN 9810222017, pp. 618—626.
- ↑ André Weil: Number theory. An approach through history. From Hammurapi to Legendre. Birkhauser Boston, Inc., Boston, MA, 1984, ISBN 0-8176-4565-9, p. 28.
- ↑ Leibniz, Gottfried Wilhelm. The Early Mathematical Manuscripts of Leibniz. Cosimo, Inc., 2008. Page 228. Copy Архивная копия от 16 июля 2017 на Wayback Machine
- ↑ Unlu, Elif. Maria Gaetana Agnesi . Agnes Scott College (April 1995). Архивировано 5 сентября 2012 года.
- ↑ История математики, том II, 1970, с. 281—282.
Литература
- Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
- Carl Benjamin Boyer (1949). The History of the Calculus and its Conceptual Development. Hafner. Dover edition 1959, ISBN 0-486-60509-4
Ссылки
- Weisstein, Eric W. «Second Fundamental Theorem of Calculus.» From MathWorld—A Wolfram Web Resource.
- Weisstein, Eric W. Calculus (англ.) на сайте Wolfram MathWorld.
- Topics on Calculus (англ.) на сайте PlanetMath.
- Calculus Made Easy (1914) by Silvanus P. Thompson Full text in PDF
- Calculus.org: The Calculus page at University of California, Davis — contains resources and links to other sites
- COW: Calculus on the Web at Temple University — contains resources ranging from pre-calculus and associated algebra
- Earliest Known Uses of Some of the Words of Mathematics: Calculus & Analysis
- Online Integrator (WebMathematica) from Wolfram Research
- The Role of Calculus in College Mathematics from ERICDigests.org
- OpenCourseWare Calculus Архивная копия от 5 мая 2010 на Wayback Machine from the Massachusetts Institute of Technology
- Infinitesimal Calculus — an article on its historical development, in Encyclopedia of Mathematics, Michiel Hazewinkel ed. .
- Elements of Calculus I and Calculus II for Business, OpenCourseWare from the University of Notre Dame with activities, exams and interactive applets.
- Calculus for Beginners and Artists by Daniel Kleitman, MIT
- Calculus Problems and Solutions by D. A. Kouba
- Solved problems in calculus
- Video explanations and solved problems in calculus Raymond, CUNY