Множество
Мно́жество — одно из ключевых понятий математики, представляющее собой набор, совокупность каких-либо (вообще говоря любых) объектов — элементов этого множества[1]. Два множества равны тогда и только тогда, когда содержат в точности одинаковые элементы[2].

Изучением общих свойств множеств занимаются
История понятия

Основы теории конечных и бесконечных множеств были заложены Бернардом Больцано, который сформулировал некоторые из её принципов[3][4][5].
С 1872 года по 1897 год (главным образом в 1872—1884 годы)
Несмотря на доброкачественность этого определения, концепция Кантора привела к парадоксам — в частности, к парадоксу Рассела.
Так как теория множеств фактически используется как основание и язык всех современных математических теорий, в 1908 году
В практике, сложившейся с середины XX века, множество определяется как модель, удовлетворяющая аксиомам ZFC (
Элемент множества
Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают заглавными буквами
Если всякий элемент множества содержится в , то пишут (« лежит в , является его подмножеством»). Согласно теории множеств, если , то для всякого элемента определено либо , либо .
Таким образом, порядок записи элементов множества не влияет на само множество, то есть . Помимо этого из вышесказанного следует, что для множества не определено число вхождений одинаковых элементов, то есть запись , вообще говоря, не имеет смысла, если — множество. Однако корректной будет запись множества .
Множества и называют равными, или одинаковыми, (и пишут ), если их численность одинакова и указанные множества состоят из одних и тех же элементов. Другими словами, множества и называют равными, если для любого объекта верно, что тогда и только тогда, когда , а это означает, что из принадлежности одному множеству следует принадлежность второму, и наоборот.
Численностью множеств (конечных) занимается наука арифметика, не обращая внимания на другие свойства множеств.
Множества можно сравнить по количеству их элементов. Множества и называют равносильными (равномощными, или эквивалентными), т. е. равными по силе, (и пишут ), если численность у них совпадает. В широком математическом смысле это значит, что можно установить взаимное однозначное (т. е. парное) соответствие между ними.
Задание множества
Существуют два основных способа задания множеств: перечислением элементов и их описанием.
Перечисление
Первый способ требует задать (перечислить) все элементы, входящие в множество. Например, множество неотрицательных чётных чисел, меньших 10, задастся: Данный способ удобно применять лишь к ограниченному числу конечных множеств.
Описание
Второй способ применяется, когда множество нельзя или затруднительно задать перечислением (например, если множество содержит бесконечное число элементов). В таком случае его можно описать свойствами принадлежащих ему элементов.
Множество задано, если указано условие , которому удовлетворяют все элементы , и которому не удовлетворяют . Обозначают
Например, график функции можно задать следующим образом:
где — декартово произведение множеств.
Отношения между множествами

Для множеств и могут быть заданы отношения:
- включено в , если каждый элемент множества принадлежит также и множеству :
- включает , если включено в :
- равно , если и включены друг в друга:
- Для любых множеств
- Если , то
- Если , , то .
Подмножество называется собственным подмножеством (и пишут ), если .
Иногда различают строгое включение () от нестрогого (), различающиеся тем, что из . Однако в большинстве случаев строгость включений не расписывают, отчего встречаются записи произвольных включений знаками строгого включения. Иногда употребляют символ как символ строгого включения.
Операции над множествами





Для наглядного представления операций часто используются
Основные операции
Пусть и — произвольные множества.
Пересечение (множество общих точек):
- .
Объединение (множество всех точек):
- .
Объединение непересекающихся и () также обозначают .
Разность (множество точек первого без второго):
- .
- ;
Пусть — универсальное множество и — произвольное его подмножество ().
- .
- .
Для операций над множествами также справедливы законы де Моргана:
- ,
- .
Приоритет операций
Последовательность выполнения операций над множествами, как и обычно, может быть задана скобками. При отсутствии скобок сначала выполняются унарные операции (дополнение), затем — пересечения, затем — объединения, разности и симметрической разности[источник не указан 2074 дня]. Операции одного приоритета выполняются слева направо. При этом надо иметь в виду, что в отличие от арифметических сложения и вычитания, для которых, в частности, верно, что , для аналогичных операций над множествами это неверно. Например, если , , , то , но, в то же время, .
Декартово произведение
Декартовым (или прямым) произведением множеств и называют упорядоченное множество, обозначаемое , элементами которого являются всевозможные пары элементов исходных множеств; .
Удобно представить, что элементы декартова произведения заполняют таблицу элементов, столбцы которой описывают все элементы одного множества, а строки, соответственно, другого.
Мощность
Мощность множества — характеристика множества, обобщающая понятие о количестве элементов конечного множества таким образом, чтобы множества, между которыми возможно установление биекции, были равномощны. Обозначается или . Мощность пустого множества равна нулю, для конечных множеств мощность совпадает с числом элементов, для бесконечных множеств вводятся специальные
Наименьшая бесконечная мощность обозначается , это мощность счётного множества (биективного ). Мощность континуального множества (биективного или ) обозначаетсяя или . Во многом определение мощности континуума строится на континуум-гипотезе — предположении об отсутствии промежуточных мощностей между счётной мощностью и мощностью континуума.
Некоторые виды множеств и сходных объектов
Специальные множества
- Пустое множество — множество, не содержащее ни одного элемента.
- Одноэлементное множество — множество, состоящее из одного элемента.
- Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. В связи с парадоксом Рассела данное понятие трактуется в настоящее время более узко как «множество, включающее все множества и объекты, участвующие в рассматриваемой задаче».
Сходные объекты
- Кортеж (в частности, упорядоченная пара) — упорядоченная совокупность конечного числа именованных объектов. Записывается внутри круглых или угловых скобок, а элементы могут повторяться.
- Мультимножество (в теории сетей Петри называется «комплект») — множество с кратными элементами.
- Пространство — множество с некоторой дополнительной структурой.
- линейного пространства, содержащий конечное число элементов некоторого поляв качестве координат. Порядок имеет значение, элементы могут повторяться.
- Последовательность — функция одного натурального переменного. Представляется как бесконечный набор элементов (не обязательно различных), порядок которых имеет значение.
- Нечёткое множество — математический объект, подобный множеству, принадлежность которому задаётся не отношением, а функцией. Иными словами, относительно элементов нечёткого множества можно говорить «в какой мере» они в него входят, а не просто, входят они в него или нет.
По иерархии
- Система множеств (множество множеств) — множество, все элементы которого также являются множествами, обычно схожего происхождения (например, все они могут быть подмножествами некоторого другого множества)[7].
- Алгебра множеств, кольцо множеств — примеры типов структур, являющихся системами множеств.
- Булеан— множество всех подмножеств данного множества.
- Семейство множеств — индексированный аналог системы множеств.
- Подмножество
- Надмножество
Примечания
- Советская Энциклопедия, 1982. — Т. 3. — С. 762. Архивировано16 октября 2013 года.
- ↑ Stoll, Robert. Sets, Logic and Axiomatic Theories. — W. H. Freeman and Company, 1974. — P. 5.
- ↑ Steve Russ. The Mathematical Works of Bernard Bolzano. — OUP Oxford, 9 December 2004. — ISBN 978-0-19-151370-1. Архивная копия от 27 апреля 2022 на Wayback Machine
- ↑ William Ewald. From Kant to Hilbert Volume 1: A Source Book in the Foundations of Mathematics / William Ewald, William Bragg Ewald. — OUP Oxford, 1996. — P. 249. — ISBN 978-0-19-850535-8. Архивная копия от 22 апреля 2022 на Wayback Machine
- ↑ Paul Rusnock. Bernard Bolzano: His Life and Work / Paul Rusnock, Jan Sebestík. — OUP Oxford, 25 April 2019. — P. 430. — ISBN 978-0-19-255683-7. Архивная копия от 17 апреля 2022 на Wayback Machine
- ↑ «Eine Menge, ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens — welche Elemente der Menge genannt werden — zu einem Ganzen.» Archived copy . Дата обращения: 22 апреля 2011. Архивировано 10 июня 2011 года.
- ↑ Студопедия — Теория множеств . Дата обращения: 2 мая 2020. Архивировано 25 ноября 2020 года.
Литература
- К. Куратовский, А. Мостовский. Теория множеств / Перевод с английского М. И. Кратко под редакцией А. Д. Тайманова. — М.: Мир, 1970. — 416 с.
- Столл Р. Р. Множества. Логика. Аксиоматические теории. / Перевод с английского Ю. А. Гастева и И. Х. Шмаина под редакцией Ю. А. Шихановича. — М.: Просвещение, 1968. — 232 с.