Логика
Ло́гика (др.-греч. λογική — «наука о правильном мышлении»; «способность к рассуждению»; от λόγος «учение, наука») — философская дисциплина и формальная нормативная наука о законах, формах и приёмах интеллектуальной деятельности[1].
Логика как наука возникла в недрах древнегреческой философии. Далее в течение почти двух с половиной тысячелетий до второй половины XIX века логика изучалась как часть философии и риторики. Начало современной логики, построенной в форме исчисления, положил Г. Фреге в сочинении «Begriffsschrift» («Запись в понятиях», в другом переводе — «Исчисление в понятиях», 1879).[2]
Основная цель логики и её функция: сохранить в неизменном виде законы выведения последующих утверждений из предыдущих
Кроме главного значения, как науки, изучающей законы мышления со стороны формы мыслей, а не их содержания, слово «логика» обладает также близкими, но более специализированными значениями «внутренняя закономерность, присущая тем или иным явлениям» или «правильный, разумный ход рассуждений».[4] В частности, этим словом может называться следующее:
- в процессе мышления — когда говорится о логичном и нелогичном мышлении, где последовательность утверждений соответствует изученным в логике схемам, в отличие от полностью бессвязных и рассуждений по аналогии с произвольными понравившимися автору образами или стереотипами;
- в электронике — вид схем, предназначенных для обработки информации и управления, в отличие от силовых схем трансформации и распределения энергии, и маломощных, но обрабатывающих атомарные сигналы: фильтрации, регистрации, генерации;
- в произвольных явлениях — приписываемая или обнаруженная в их функционировании определённая схема, повторяющийся в процессах шаблон, которые могут быть описаны в логических категориях: состояние, подчинение, отражение, зависимость и т. п.
Основные сведения
Интеллектуальную деятельность,
Логика изучает такие формы мысли, а также их вербальные, символьные (знаковые) представления, которые находятся в корректном отношении (истинности, случайности, возможности, необходимости и т. д.) к положению дел в реальном мире, и которые, будучи применены к совокупностям корректных по форме мыслей (представлений), вновь приводят к корректным мыслям (представлениям).
К основным изучаемым в логике формам мысли относятся корректные
Таким образом, логика изучает способы вывода новых истинных знаний не из непосредственно данного
Характерной чертой современной логики является антипсихологизм[2]. Если в ХIX веке часто логика рассматривалась как часть психологии (Т. Липпс, Хр. Зигварт), то Г. Фреге показал, а под его влиянием Э. Гуссерль убедительно подтвердил, что это не так, что логика базируется на собственном основании, природа которого не психологическая. В то же время при анализе формулируемых субъектом оценочных предложений необходимо учитывать его знания, верования, убеждения. Для изучения таких предложений требуется строить специальные логики, включающие субъект.[2]
Изучение правил корректного мышления с применением символических представлений является областью исследований символической логики. Представления правил и операций корректного мышления в виде формализованных структур исследуются в формальной логике. Формализованные структуры, отражающие формальные аспекты корректного мышления и удовлетворяющие требованиям к математическим структурам, а также другие близкие к ним математические структуры изучаются в математической логике.[2]
Символы применял ещё Аристотель, а также все последующие учёные-логики.[6] По-видимому, термин «символическая логика» впервые был применен Дж. Венном в 1880.[7] Иногда термин «символическая логика» используется как синоним термина «математическая логика».[8] Определение «формальная» для логики, занимающейся анализом формальной стороной структуры высказываний и доказательств, было введено И. Кантом для отграничения её по главной особенности от других видов логик.[6]
Математическая логика представляет собой раздел математики, объединяющий исследования логических проблем с применением математических средств, что позволяет изучать формальную сторону корректного связного мышления более точно. Под современной логикой понимается именно математическая логика.[2] Также утверждается, что «современная логика является логикой по предмету, и математикой по методу»,[2] и таким образом логика представляет собой отдельную сущность, не являющуюся частью математики. В настоящее время символьная, формальная и математическая логики часто рассматриваются как синонимы, особенно с добавлением «современная».[2]
Поэтому исследования логических вопросов с использованием средств естественного языка в философии продолжаются, но уже дополнительно с применением идей и аппарата математической логики. Это позволяет прояснить основания логики более глубоко. Также это позволяет провести более глубокий и точный анализ и осмысление некоторых понятий и проблем философии. Такие исследования в философии дают новые импульсы к развитию современной логики.[6]
Логические исследования в современной философии не образуют целостной её области, а представляют собой совокупность отдельных логико-философских работ, которые, тем не менее, объединяются в раздел, называемый философской логикой.[6] В Новой философской энциклопедии (НФЭ) ИФ РАН таким образом понимаемой философской логике выделяются две части: собственно «философская логика», изучающая философские проблемы средствами современной логики и «философия логики», исследующая основания логики средствами философии. При этом утверждается, что зачастую одно подменяется другим, хотя это два разных направления исследований.[9] Другие исследователи под философской логикой (точнее, под философскими логиками) понимают неклассические логики, в которых изучаются типы рассуждений, а также стороны познавательного процесса, в том числе требующие применения модальностей, не учитываемых в классических логиках, базирующихся на двузначном принципе.[2] В то же время в НФЭ ИФ РАН утверждается, что философская логика трактовалась как модальная (являющаяся частью совокупности неклассических логик) только первоначально. Также в этой энциклопедии выражается мнение, что различными специалистами философская логика понимается по-разному, и скорее, по-своему. Даже если она и выделяется как особая научная дисциплина, её предмет, границы применения и методы однозначно определить не удаётся.[9]
По мнению В. А. Бочарова и В. И. Маркина,[2] логика как наука включает множество частных различающихся логик. Более того, таких логик бесконечно много. Эти логики базируются на различных совокупностях типов отношений вещей и способов анализа, принятии разных предпосылок, абстракций и идеализаций, соответствующих использованной точки зрения, ракурсу взгляда и оценки объективной реальности. Однако никакие теоретические построения, на каких бы совокупностях абстракций и идеализаций они бы не основывались, не могут охватить полностью всю реальность — реальность всегда остается более богатой и динамичной, чем любые теории. Всё это приводит к постоянному появлению новых логик, логических теорий, направленных на исследования вновь открытых типов рассуждений, высказываний, правил и законов, базирующихся на различных совокупностях исходных предпосылок. Таким образом осуществляется постоянное развитие логики в целом, как науки.
Логика лежит в основе всех наук и используется в качестве одного из основных их инструментов.[10] Как было сказано выше, логика образует разделы философии и математики; раздел булевой алгебры — классической математической логики — является одной из основ информатики.[11]
По мнению В. А. Бочарова, в логике выделяются следующие основные разделы: теория рассуждений (включает теорию дедуктивных рассуждений и теорию правдоподобных рассуждений), металогика и логическая методология.[1][12]
Изучение мыслительной деятельности в логике сопряжено с исследованием языковых конструкций вербальных представлений мыслей в логической
История логики
Подобно тому как умение говорить существовало ещё до возникновения
Хотя многие культуры выработали сложные системы рассуждения, логика как эксплицитный анализ методов рассуждения получила основательное развитие изначально только в трёх традициях: в
Можно выделить следующие исторические и региональные формы логики (приведены также их наименования, исторически существовавшие и принятые в литературе по истории формальной логики):[источник не указан 1812 дней]
- Древнекитайская логика.
- Индийская логика.
- Европейская и ближневосточная логика: традиционная логика (в широком смысле)
- Античная и раннесредневековая логика: диалектика;
- Средневековая логика:
- Арабская и еврейская средневековая логика;
- Восточнохристианская средневековая логика;[16]
- Западноевропейская средневековая логика: схоластическая логика, диалектика
- Логика европейского Возрождения; диалектика;
- Логика Нового времени: традиционная логика (в узком смысле), формальная логика.
- Современная логика (общемировая, со второй половины XIX века): математическая логика, символическая логика, логистика (последнее — как правило, в западной литературе).
Логика в своём развитии прошла три порога:
- порог формализации рассуждений (во всех трёх традициях);
- введение условных (символических, буквенных и числовых) обозначений (только европейская традиционная логика);
- научная революция, с которой началась современная логика, — математизация (внесение в логику математических методов).
Логика в Древнем Китае
Основные методологические исследования логической тематики
Современник
Одно из ответвлений моизма, логики (
Позднее, при
Индийская логика
Истоки логики в Индии можно проследить в грамматических текстах V века до н. э.. Две из шести ортодоксально-индуистских (ведийских) школ индийской философии — ньяя и вайшешика — занимались методологией познания из этого проблемного поля и выделилась логика.
Само название школы «ньяя» значит «логика». Главным её достижением была разработка логики и методологии, ставших впоследствии общим достоянием (ср. аристотелевская логика в Европе). Основным текстом школы были
У Дигнаги и его последователя Дхармакирти буддийская логика достигла вершины. Центральным пунктом их анализа было установление (определение) необходимой логической присущности (включённости в определение), «вьяпти», также известное как «неизменное следование» или «убеждение». Для этой цели они развили учение об «апоха» или различении, о правилах включения признаков в определение или исключения их из него.
Школа навья-ньяя («новая ньяя», «новая логика») была основана в XIII веке Ганешей Упадхьяей из Митилы, автора «Таттвачинтамами» («Сокровище мысли о реальности»). Впрочем, и он опирался на работы своих предшественников X века.[источник не указан 1812 дней]
Европейская и ближневосточная логика
В истории европейской логики можно выделить этапы:[источник не указан 1812 дней]
- аристотелевский (традиционный) продолжался сотни лет, в течение которых логика развивалась очень медленно;
- схоластический этап развития, пик которого приходится на XIV век;
- нововременной этап.
Логика античности
Основателем логики в
После Аристотеля в Древней Греции логика также разрабатывалась представителями школы стоиков. Большой вклад в развитие этой науки внесли оратор Цицерон и древнеримский теоретик ораторского искусства Квинтилиан.[источник не указан 1812 дней]
Логика в Средневековье
По мере приближения к
Логика в эпоху Возрождения и в Новое время
Этот исторический период в логике отмечается появлением множества крайне значимых для науки публикаций.
В 1662 году в Париже издан учебник «Логика Пор-Рояля», авторами которого являются П. Николь и А. Арно, создавшие логическое учение на основе методологических принципов Рене Декарта.[1]
Новейшее время
Во второй половине
Основателем математической логики считается
математическая логика оформилась в качестве самостоятельной дисциплины в рамках логической науки и математики.Начало XX века ознаменовалось становлением идей неклассической логики, многие важные положения которой были предвосхищены и/или заложены Н. А. Васильевым и И. Е. Орловым.
В середине XX века развитие вычислительной техники привело к появлению логических элементов, логических блоков и устройств вычислительной техники, что было связано с дополнительной разработкой таких областей логики и приложений на стыке логики и математики, как проблемы логического синтеза, логическое проектирование и проблемы логического моделирования логических устройств и средств вычислительной техники.[11]
В 80-х годах XX века начались исследования в области
В 80-е годы начались также изменения в образовании. Появление персональных компьютеров в средних школах привело к созданию учебников информатики с изучением элементов математической логики для объяснения логических принципов работы логических схем и устройств вычислительной техники.[источник не указан 1812 дней]
Неформальная, формальная, символическая и диалектическая логика
Неформальная логика (термин принят прежде всего в англоязычной литературе) — исследование аргументации в естественном языке. Одной из главных её задач является исследование логических ошибок — см. Логическая семантика, философская логика, теория аргументации, логический анализ языка. Любой вывод, сделанный на естественном языке, обладает чисто формальным содержанием (смысл рассуждения может быть разделён на форму мысли и собственно содержание), если можно показать, что он является частным применением абстрактного универсального правила, которое отвлекается от всякого конкретного предмета, свойства или отношения. Именно этот вывод с чисто формальным содержанием называют логическим выводом и основным предметом логики. Анализ вывода, который раскрывает это чисто формальное содержание, называется формальной логикой.
Символическая логика изучает символические абстракции, которые фиксируют формальную структуру логического вывода.
В рамках формальной логики имеется группа логик, именуемых неклассическими (иногда также используется термин «альтернативные логики»). Эта группа логик существенно отличается от классических логик путём различных вариаций законов и правил (например, логики, отменяющие закон исключённого третьего, меняющие таблицы истинности и т. д.). Благодаря этим вариациям возможно построение различных моделей логических следствий и логической истины[20].
Теория рассуждений
Важнейшим разделом логики является теория рассуждений, в которой наибольшее значение имеет теория
Различные логические теории рассуждений различаются типами анализируемых в них рассуждений, логическими правилами и логическими законами.[1]
По глубине анализа высказываний различают
Законы логики
Закон логики — это общезначимый принцип какой-либо логической теории, формула которого принимает значение «истина» при любых допустимых в этой теории значениях нелогических символов. В логических исчислениях их теоремы, доказуемые с использованием дедуктивных средств исчисления, тоже признаются логическими законами. В традиционной логике было четыре основных логических закона:[21]
- Закон тождества постулирует, что в процессе рассуждения понятия и суждения должны употребляться в одном и том же смысле.[22]
- Закон непротиворечия гласит, что два противоречащих суждения не могут быть одновременно истинными. По крайней мере одно из них ложно.[23]
- Закон достаточного основания говорит о том, что каждое осмысленное выражение (понятие, суждение) может считаться достоверным только в том случае, если оно было доказано, то есть были приведены достаточные основания, в силу которых его можно считать истинным.[24]
- Закон исключённого третьего утверждает, что любое высказывание или истинно, или ложно, третьего не дано.[25]
В некоторых теориях современной логики применимы не все традиционные логические законы.[21]
Металогика
Метатеоретические проблемы логики
- Непротиворечивость формализованных теорий.
- Полнотаформализованных теорий.
- Разрешимостьформализованных теорий.
- Независимость аксиом формализованных теорий.
- Корректность формальной системы.
- Определимость.
- Сравнительный анализ логических теорий.[источник не указан 1812 дней]
Концепции логики
Концепции логики[источник не указан 1547 дней] различаются между собой прежде всего по способам решения метатеоретических проблем логики, связанных с основаниями математики:
- Психологизм.
- Логицизм.
- Формализм (математика).
- Интуиционизм.
- Конструктивная математика.
- Консерватизм (логика).[источник не указан 1812 дней]
Традиционная логика
Под традиционной логикой понимаются системы
Классическая математическая логика
Классическая традиционная логика создавалась в первую очередь для нужд математики поэтому её называют также математической логикой.[1]
Классическая логическая теория далеко не совершенна: основное её содержание формулируется на особом, созданном для своих целей языке, использует предметное мышление. В ней не предполагается использование контроля прагматических ошибок, погрешностей, нелинейностей используемых систем отсчёта, пограничных ошибок описания, релятивизма масштабирования (относительность предметов и их пространственных характеристик, к примеру: человек велик относительно муравья, но в то же время мал относительно слона) и т. п. Вследствие чего принято считать нормальным факт наличия в её языке парадоксов и априорных утверждений, кустовых эффектов словаря и т. п.
Аппарат математической логики
Это пустой раздел, который еще не написан. |
Исчисления и логические методы
![]() | Этот раздел нужно дополнить. |
- Разрешимость.
- Семантическое древо.
- Таблицы Бета.
- Аксиоматика.
- Натуральный вывод.
- Исчисление секвенций.
Логическая семантика
![]() | Этот раздел нужно дополнить. |
- Алгебраические семантики.
- Теоретико-множественные семантики.
- Реляционные семантики возможных миров.
- Проблема содержательности семантик логических систем.
- Категорная семантика.
- Теория семантических категорий.[источник не указан 1812 дней]
Теория моделей
Это пустой раздел, который еще не написан. |
Теория доказательств
Это пустой раздел, который еще не написан. |
Неклассические логики
![]() | Этот раздел нужно дополнить. |
Логики, отменяющие закон исключённого третьего
Многозначные логики
- Многозначная логика.
- Двузначная логика.
- Трёхзначная логика.
Недедуктивные логические теории
- Индуктивная логика.
- Вероятностная логика.
- Логика решений.
- Логика нечётких понятий (логика нечётких множеств, нечёткая логика).
- Аналогия (умозаключение по аналогии).
Другие неклассические логики
- Деонтическая логика (от др.-греч. δέον — долг и логика; ло́гика норм, нормати́вная ло́гика) — раздел модальной логики. Оперирует понятиями: обязательство, разрешение, норма. «Ты обязан это сделать» («Твой долг это сделать») либо «Ты можешь это сделать».
- Комбинаторная логика — направление математической логики, занимающееся фундаментальными (то есть не нуждающимися в объяснении и не анализируемыми) понятиями и методами формальных логических систем или исчислений.[28][29][уточнить ссылку 1531 день]
- Категориальная логика .[источник не указан 1812 дней]
- Кондициональная логика (условная логика). Её предмет — истинность условных предложений (в частности, сослагательного наклонения). Логика контрафактических утверждений.[источник не указан 1812 дней]
Модальная логика
Мода́льная ло́гика (от лат. modus — способ, мера) — логика, в которой кроме стандартных логических связок, переменных и предикатов есть модальности (модальные операторы, другие названия: модальные понятия, модальные отношения, модальные характеристики, оценки).
Логическая теория является модальной, если:
- она содержит хотя бы три модальных оператора;
- она является надстройкой над логикой ассерторических высказываний;
- квалификации, даваемые сильными её модальностями, несовместимы с квалификациями, даваемыми слабыми её модальностями;
- из простой истинности или ложности высказывания нельзя заключить, какую именно модальную характеристику должна иметь устанавливаемая этим высказыванием связь;
- из квалификации высказывания с помощью слабого модального понятия не следует ни то, что высказывание истинно, ни то, что оно ложно;
- если высказыванию приписана слабая модальная характеристики, то его отрицанию должна быть приписана она же.
Основные понятия науки логики
Основные понятия, используемые в логике:[30]
- Абстракция
- Адаптация
- Аналогия
- Антиномия
- Аргументация
- Ассоциация
- Гипотеза
- Дедукция
- Доказательство
- Доказуемость
- Законы логики
- Индукция
- Истинность
- Классификация
- Обобщение
- Определение
- Опровержение
- Парадокс
- Паралогия
- Понятие
- Признак
- Семантика
- Силлогизм
- Софизм
- Софистика
- Суждение
- Тавтология
- Теория
- Умозаключение
- Формальный язык
См. также
- Автоматическое доказательство теорем
- Аксиоматизация
- Аналитическая философия
- Диалектика
- Диалектическая логика
- Динамическая логика
- Доказательное программирование
- Идеализация
- Когнитивная психология
- Логика в информатике
- Логический парадокс
- Логическое программирование
- Методология науки
- Список логических символов
- Трансцендентальная логика
- Философская логика
- Формализация
Примечания
- ↑ Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- ↑ 1 2 3 4 5 6 7 8 9 Бочаров В. А., Маркин В. И. Введение в логику. — М.: ИД «ФОРУМ»: ИНФРА-М, 2010. С. 35-39. — 560 с. — ISBN 978-5-8199-0365-0 (ИД «ФОРУМ») ISBN 978-5-16-003360-0 («ИНФРА-М»)
- ↑ Кондаков Н.И. логический словарь-справочник. — г.москва: издательство наука, 1975. — С. 285.
- ↑ Ефремова Т. Ф. Новый словарь русского языка. Толково-словообразовательный. Архивная копия от 6 декабря 2007 на Wayback Machine — 2001—2002.
- ↑ Владимир Васюков. Логика // Энциклопедия «Кругосвет».
- ↑ 1 2 3 4 Горский Д. Н., Ивин А. А., Никифоров А. Л. Краткий словарь по логике. Статья — философская логика- М.: Просвещение, 1991. −208 с. — ISBN 5-09-001060-9
- ↑ Новая философская энциклопедия ИФ РАН: символическая логика. Дата обращения 01.03.21 . Дата обращения: 27 февраля 2021. Архивировано 10 апреля 2021 года.
- Ю. С. Осипов ; 2004—2017, т. 30). — ISBN 978-5-85270-367-5.
- ↑ 1 2 Новая философская энциклопедия ИФ РАН: философская логика. Дата обращения 23.02.21. Дата обращения: 27 февраля 2021. Архивировано 10 апреля 2021 года.
- ↑ Gauch H. G. The PEL model of full disclosure Архивная копия от 23 октября 2017 на Wayback Machine // Scientific Method in Practice.— Cambridge University Press, 2003.— p.124.— 435pp.— ISBN 978-0-521-01708-4
- ↑ 1 2 Бауэр Ф. Л., Гооз Г. Информатика: вводный курс. Перевод с нем. М. Мир. 1976 г. 484с.
- Мысль, 2010. — 2816 с.
- ↑ Ивин А. А. Логика. — М.: Знание, 1998.
- Думай медленно... решай быстро. — М.: АСТ, 2013. — 625 с.
- ↑ Тихонравов Ю. В. Философия: Учебное пособие. — М.: Инфра-М, 2000. — 269 с.
- ↑ Глава III Части первой. "Средневековая философия: теоцентризм" — Департамент философии . mipt.ru. Дата обращения: 5 мая 2022. Архивировано 8 сентября 2021 года.
- ↑ Логическое программирование: Пер. с англ. и фр. — М.: Мир, 1988. — 368 с., ил. ISBN 5-03-000972-8
- ↑ Дал У., Дейкстра Э., Хоор К. Структурное программирование. — Москва: Мир, 1972.
- Princeton University Press, 2009. — С. vii—viii. — ISBN 978-0-691-13789-6.
- ↑ Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
- ↑ Традиционная логика // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Традиционная логика//Философия: Энциклопедический словарь. — М.: Гардарики. Под редакцией А. А. Ивина. 2004.
- ↑ Под редакцией Ф. В. Константинова. Логика комбинаторная // Философская Энциклопедия. В 5-х т. — Советская энциклопедия . — М., 1960—1970.
- ↑ Кондаков, 1971.
- ↑ Гетманова А. Д. Учебник по логике Архивная копия от 29 июня 2018 на Wayback Machine. — М.: Владос, 1995. — ISBN 5-87065-009-7
Литература
- Мысль, 2010. — 2816 с.
Исследования
- Гуссерль Э. Логические исследования. Т. 1 // Философия как строгая наука. — Новочеркасск: Сагуна, 1994. — 357 с. — ISBN ISBN 5-7593-0138-1.
- Васильев Н. А. Воображаемая логика. Избранные труды. — Наука, 1989. — 264 с. — 6200 экз. — ISBN 5-02-007946-4.
Учебная и справочная литература
- Строгович М.С. Логика. — М.: Госполитиздат, 1949. — 363 с.
- Виноградов С. Н., Кузьмин А. Ф. Логика. Учебник для средней школы. М.: 1954
- Гетманова А. Д. Учебник по логике. — М.: Владос, 1995. — 303 с. — ISBN 5-87065-009-7
- Кондаков Н. И. Логический словарь-справочник. — М.: Наука, 1975. — 720 с.
- Кондаков Н. И. Введение в логику. — М.: Наука, 1967 на сайте Руниверс
- Ивлев Ю. В. Учебник логики: Семестровый курс: Учебник. — М.: Дело, 2003. — 208 с — ISBN 5-7749-0317-6
- Бочаров В. А., Маркин В. И. Основы логики: Учебник. — М.: ИНФРА-М, 2001. — 296 с. — ISBN 5-16-000496-3
- Бочаров В. А., Маркин В. И. Глава I. Предмет и основные понятия логики // Основы логики: учебник. — М.: ИНФРА-М, 1998. — С. 224. — 9 с. — ISBN 5-86225-595-8. Архивная копия от 7 марта 2016 на Wayback Machine
- Ивин А. А. Логика: Учебное пособие. — Изд. 2-е. — М.: Знание, 1998. — (На портале «Философия в России»; [yanko.lib.ru/books/philosoph/ivin-logika.htm на сайте Славы Янко])
- Ивин А. А., Никифоров А. Л. [yanko.lib.ru/books/dictionary/slovar-po-logike.htm Словарь по логике] — М.: Туманит, ВЛАДОС, 1997. — 384 с — ISBN 5-691-00099-3.
- Горский Д. П. Логика: Учебное пособие для педагогических училищ. (недоступная ссылка) — Изд. 3-е. — М.: Учпедгиз, 1961. — 160 с.
- Челпанов Г. И. Учебник логики. — М., 1994.
- Формальная логика / Под ред. И. Я. Чупахина, И. Н. Бродского. — Л.: ЛГУ, 1977. — 357 с.
- Кондаков Н. И. Логический словарь. — М.: Наука, 1971. — 658 с.
Литература по истории логики
- Бажанов В. А. История логики в России и СССР. — М.: Канон+, 2007. — 336 с. — ISBN 5-88373-032-9
- Маковельский А. О. История логики. — М., 1967. — 504 с.
- Попов П. С. История логики нового времени. — М., Издательство МГУ, 1960.
- Стяжкин Н. И. Формирование математической логики. — М., 1967.
- Scholtz H. Geschichte der Logik, 1931. (Concise History of Logic. — New York, 1961).
Литература по китайской логике
- Спирин B. C. О «третьих» и «пятых» понятиях в логике древнего Китая // Дальний Восток. Сборник статей по филологии, истории, философии. — М., 1961.
- Кроль Ю. Л. Спор как явление культуры древнего Китая // Народы Азии и Африки. — 1987. — № 2.
- Крушинский А. А. Имена и реалии в древнекитайской логике и методологии (Обзор) // Современные историко-научные исследования: наука в традиционном Китае. — М., 1987.
- Пань Шимо (КНР). Логика Древнего Китая (краткий очерк) // Философские науки. — 1991. — № 12.
- Чжоу Юньчжи. Основные вехи развития древнекитайской логики мин бянь, её главные особенности и реальные достижения // Рационалистическая традиция и современность. Китай. 1993. №. — С. 152—178.
- Крушинский А. А. Логика «И цзина». Дедукция в древнем Китае. — М., 1999.
- Кварталова Н. П. Логические идеи трактата «Гунсунь Лун-цзы» // Человек и духовная культура Востока. Альманах. Вып. I. — М., 2003. — С. 167—172.
- Кобзев А. И. Школа имен (мин цзя): коллизия логики и диалектики // Китай в диалоге цивилизации: К 70-летию академика М. Л. Титаренко. — М. 2004. — С. 550—557.
Ссылки
- Институт Логики, Когнитологии и Развития Личности (ИЛКиРЛ)
- Федеральный образовательный портал «Социально-гуманитарное и политологическое образование». Раздел «Философия». Подраздел «Логика»
- Логика в Электронной библиотеке по философии
- Философия в России — философский портал philosophy.ru
- История античной культуры > История и культура Древней Греции > Подвиг Сократа
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. |