Эта статья входит в число хороших статей

Программируемая клеточная гибель

Материал из Википедии — свободной энциклопедии

Программи́руемая кле́точная ги́бель, или программи́руемая кле́точная смерть

клетки, которая происходит за счёт запрограммированных внутриклеточных процессов. Ко второму десятилетию XXI века насчитывается более десяти известных видов программируемой клеточной гибели. С 2005 года классификацией видов клеточной гибели занимается Комитет по номенклатуре видов клеточной гибели (англ. Nomenclature Commitee on Cell Death). Программируемая клеточная гибель описана для всех крупных групп эукариот: животных, растений, грибов, слизевиков и даже одноклеточных организмов (например, дрожжей). ПКГ выполняет множество функций как на уровне клетки, так и на уровне целого организма: у животных она играет важнейшую роль в развитии, с её помощью элиминируются повреждённые клетки, у растений она задействована в образовании тканей, состоящих из мёртвых клеток, таких как ксилема. Программируемая клеточная гибель известна не только у эукариот: несколько видов программируемой гибели было описано у бактерий[3]. Все виды программируемой клеточной гибели можно подразделить на внешние, которые запускаются сигналами извне клетки, и внутренние, вызванные нарушениями в функционировании клеток[4]
.

Классификация

С точки зрения морфологии долгое время выделялось три основных вида программируемой клеточной смерти:

  • Клеточная гибель I типа, или
    везикул. В конце концов всё содержимое клетки распадается на везикулы (апоптотические тельца), которые фагоцитируются соседними клетками и расщепляются в их лизосомах
    .
  • Клеточная гибель II типа, или аутофагия. При аутофагии в цитоплазме разрушающейся клетки формируется множество вакуолей, которые затем фагоцитируются и разрушаются соседними клетками.
  • Клеточная гибель III типа, или некроз. Некроз характеризуется полным отсутствием черт, присущих апоптозу и аутофагии. Остатки разрушившейся клетки запускают воспаление[4].

Позже была принята более сложная классификация видов программируемой клеточной гибели, которая построена не на морфологических деталях, а на генетических, биохимических, фармакологических и функциональных особенностях. Однако выделенные таким образом виды гибели далее делят на две группы по морфологии: в одну относят виды смерти, которые морфологически близки к апоптозу, а в другую — те, которые морфологически близки к некрозу. Таким образом, для каждого вида программируемой клеточной гибели присущ свой набор свойств, от полностью апоптотического до полностью некротического[4].

По состоянию на 2018 год выделяют следующие виды программируемой клеточной гибели[4]:

Зависимая от лизосом клеточная гибель

Зависимая от лизосом клеточная гибель начинается с нарушений клеточного

патофизиологических процессах: воспалении, перестройке тканей (например, перестройке ткани молочных желёз после лактации), старении, нейродегенеративных заболеваниях, сердечно-сосудистых заболеваниях и ответе на внутриклеточные патогены[4]
.

После пермеабилизации мембран лизосом содержимое последних выходит в

белка BAX[англ.]. Важную роль в запуске повышения проницаемости лизосомальных мембран играют активные формы кислорода[4]
.

Зависимая от аутофагии клеточная гибель

Аутофагосомы, меченные флуоресцентным красителем, в клетках hTERT-RPE1

Зависимая от аутофагии клеточная гибель подразумевает активацию молекулярных механизмов аутофагии (всех или части), которые приводят к образованию

дрозофилы аутофагия задействована в обновлении выстилки средней кишки и деградации личиночных слюнных желёз. Зависимая от аутофагии клеточная гибель вносит свой вклад в патогенез ряда заболеваний и у человека. Например, при некоторых патологических состояниях по пути аутофагии погибают нейроны. Разновидность зависимой от аутофагии клеточной гибели, в которой задействована Na+/K+-АТФаза, известна как аутоз[4]
.

Иммуногенная клеточная гибель

Иммунногенной клеточной гибелью называют те виды клеточной смерти, которые сопровождаются активацией

.

Внутренний апоптоз

Обобщённая схема апоптоза млекопитающих

Внутренний апоптоз запускают разнообразные изменения окружающей среды клетки: отсутствие

метаболическую активность. Они распадаются на везикулы — апоптотические тельца, которые фагоцитируются другими клетками. Критический этап внутреннего апоптоза — необратимая пермеабилизация внешних митохондриальных мембран, которая контролируется различными белками семейства BCL2[англ.]. В результате в цитозоль выходят проапоптотические факторы, которые в обычное время находятся в межмембранном пространстве митохондрий[англ.]. Важнейшим из них является белок дыхательной цепи цитохром c. В цитозоле он связывается с белком APAF1 и про-каспазой 9, формируя комплекс, известный как апоптосома. В ней каспаза 9 активируется, формируя димеры, которые сами себя разрезают и тем самым активируют, и начинает активировать другие каспазы, внося в них разрезы. Каспазы — это протеазы, которые разрушают все белки клетки и вызывают смерть клетки[4]
.

Внешний апоптоз

Внешний апоптоз запускается изменениями в микроокружении[англ.] клетки. Ключевую роль в запуске внешнего апоптоза играют два типа рецепторов клеточной мембраны: рецепторы смерти, которые активируются при связывании с лигандом, а также рецепторы, которые активируются, когда концентрация их лиганда опускается ниже некоторого значения. К числу рецепторов смерти относятся, например, рецептор Fas[англ.] и ряд других рецепторов суперсемейства факторов некроза опухолей (англ. tumor necrosis factor, TNF). Когда рецептор смерти активируется, у его внутриклеточной части собирается особый многобелковый комплекс — DISC (от англ. death-inducing silencing complex). Он регулирует активацию и функционирование каспазы 8 (или, в некоторых случаях, каспазы 10). Вслед за ней активируются и остальные каспазы, которые разрушают клеточные белки и приводят к её гибели[4].

Некроз, зависимый от проницаемости митохондрий

MPT-зависимый некроз начинается при особых изменениях внутриклеточных условий, таких как сильный окислительный стресс и значительное повышение концентрации ионов кальция в цитозоле. Сокращение MPT происходит от англ. mitochondrial permeability transition — нарушение проницаемости митохондрий, так как при этом виде клеточной гибели внутренняя митохондриальная мембрана становится проницаемой для малых молекул, что приводит к исчезновению электрохимического градиента на ней, осмотическому разрушению обеих митохондриальных мембран и в конечном счёте гибели клетки в виде некроза[4].

Некроптоз

Молекулярные механизмы некроптоза

Некроптоз вызывается различными изменениями во внутренней и внешней среде клетки, которые детектируются особыми рецепторами смерти (например, Fas), рецепторами распознавания патогенов (например,

T-лимфоцитов во взрослом организме[4]
.

Параптоз

Параптоз представляет собой тип неапоптотической гибели клеток, который опосредован МАРК через активацию ИФР-1. Характеризуется внутриклеточным образованием вакуолей и набуханием митохондрий.

Ферроптоз

Ферроптозу, как правило, предшествует серьёзное повреждение клеточных

антиоксидантной активностью, которые отвлекают на себя активные формы кислорода и не дают им взаимодействовать с липидами[4]
.

Пироптоз

Пироптоз активируется в ходе реакций врождённого иммунитета. При пироптозе происходит особая конденсация хроматина, отличающаяся от конденсации хроматина при апоптозе. Клетка разбухает, происходит пермеабилизация мембраны. В пироптозе ведущую роль играет провоспалительная каспаза 1, однако в некоторых случаях вместо неё выступают другие каспазы, например, каспаза 3. Пироптоз задействован в развитии многих патологических состояний, например, смертельного септического шока, вызванного бактериальными липополисахаридами. Именно бактериальные липополисахариды, попадающие в цитоплазму клеток организма-хозяина, вероятно, играют ведущую роль в запуске пироптоза[4].

Партанатоз

Партанатоз — это форма программируемой клеточной гибели, характеризующаяся гиперактивацией

полимеров поли(АДФ-рибозы) и поли(АДФ-рибоз)илированных белков в митохондриях (из-за чего теряется мембранный потенциал и пермеабилизуется внешняя митохондриальная мембрана)[4]
.

Энтоз

Схема энтоза

Энтоз — это форма клеточного каннибализма, которая происходит в здоровых тканях и

раковых клеток энтоз может запускаться при митозе. Гибель поглощённой клетки не зависит от каспаз и белков BCL2, играющих важнейшую роль в апоптозе. По крайней мере в некоторых случаях гибель происходит в виде особой формы аутофагии[4]
.

Нетоз

Схема NETоза

Первоначально эта форма гибели была описана у

микробами, активацией особых рецепторов (например, Toll-подобных). Существенная доля ДНК, входящей в состав этих волокон, имеет митохондриальное, а не ядерное происхождение. NET могут выбрасывать и другие клетки, отличные от нейтрофилов: тучные клетки, эозинофилы и базофилы, причём выброс NET не всегда приводит к гибели клетки. NET обладают не только антимикробным эффектом; показана их роль в таких заболеваниях, как диабет и рак[4]
.

У беспозвоночных

Апоптоз у дрозофилы

Программируемая клеточная гибель зафиксирована у

Drosophila melanogaster имеется несколько каспаз и ингибиторов апоптоза, кроме того, некоторые белки ПКГ, такие как REAPER, HID и GRIM, могут быть специфичны для насекомых[12]
.

У растений

У растений программируемая клеточная гибель наблюдается при образовании

аспартат-специфичным протеазам. В здоровых тканях фитаспазы находятся в апопласте, а при индукции ПКГ входят в цитозоль[1]
.

У грибов

У грибов программируемая клеточная гибель наблюдается при образовании

плодового тела или склероция, в реакции вегетативной несовместимости, при патогенезе, стрессовых условиях и на заключительных этапах старения. Этим назначение ПКГ у грибов отличается от такового у животных, у которых она прежде всего важна для развития. В общем случае ПКГ грибов аналогична внутреннему апоптозу животных. ПКГ детально изучена у дрожжей Saccharomyces cerevisiae и может запускаться разнообразными внутренними факторами, причём внешний механизм активации ПКГ не обнаружен. У них нет и очевидных гомологов ключевых белков апоптоза животных, таких как Bcl-2, p53, FLIP[англ.], PARP и даже каспазы. В то же время гомологи некоторых регуляторных апоптотических белков отсутствуют у дрожжей, но есть у мицелиальных грибов. У Podospora anserina[англ.] ПКГ проявляется при старении мицелия, которое обусловлено действием активных форм кислорода. В ходе ПКГ у P. anserina функционируют цистеиновые протеазы с каспазной активностью[2]
.

У слизевиков

Плодовое тело слизевика Dictyostelium discoideum имеет ножку, образованную мёртвыми клетками. Эти клетки подверглись ПГК, похожей на аутофагию животных по степени развития вакуолей и конденсации хроматина, кроме того, в отличие апоптоза, фрагментации ДНК не происходит[13]. Предки слизевиков отделились от остальных эукариот более миллиарда лет назад до отделения предков растений и грибов, что свидетельствует о древнем происхождении программируемой клеточной гибели[14].

У бактерий

У бактерий известно несколько форм программируемой клеточной гибели. В условиях стресса (окислительного стресса, воздействия

инфекции) часть клеток погибает на благо колонии. Чаще всего смерть происходит при участии систем токсин-антитоксин различных типов. Бактериофаги, геном которых представлен двуцепочечной ДНК, вызывают гибель заражённых клеток в конце литического цикла для высвобождения новых вирионов с помощью холин-эндолизиновой системы. Маленькие белки холины[англ.] встраиваются в мембрану, давая возможность выйти наружу эндолизинам[англ.]. Эндолизины гидролизуют пептидогликан, разрушают клеточную стенку и вызывают лизис клетки. Гибель бактериальных клеток наблюдается на разных этапах развитии колонии и при отсутствии стресса: при споруляции, генетической трансформации, образовании плодовых тел и формировании биоплёнок. Механизмы программируемой клеточной гибели во всех перечисленных случаях различны[3]
.

Физиологическое значение

Физиологическое значение программируемой клеточной гибели огромно. У животных она играет важнейшую роль в развитии многих органов и тканей, а также старении. В ходе развития нервной системы множество клеток-предшественников

эмбрионального развития. Апоптоз задействован в морфогенезе животных (в частности, апоптозом погибают клетки между пальцами, за счёт апоптоза исчезает хвост у головастика). Иммуногенная клеточная смерть и пироптоз наряду с апоптозом задействованы в работе защитных систем организма. Подавление ПКГ очень часто связано со злокачественным перерождением клетки[15]. У растений ПКГ участвует в образовании тканей, состоящих из мёртвых клеток, например, ксилемы. Кроме того, на ПКГ основана самонесовместимость при опылении: если на рыльце попадает пыльца от того же растения, то особые белки на рыльце запускают ПКГ клеток пыльцевого зерна[16]. У грибов ПКГ обеспечивает вегетативную несовместимость, то есть не даёт сливаться гифам одного штамма, а также задействована в созревании спор полового и бесполого размножения[2]
.

История изучения

Ёсинори Осуми

Сама концепция программируемой клеточной гибели была предложена

Нобелевская премия по физиологии и медицине была присуждена за открытия в молекулярной биологии программируемой клеточной гибели Сиднею Бреннеру, Роберту Хорвицу и Джону Салстону [19], а в 2016 году этой награды был удостоен Ёсинори Осуми, исследовавший один из видов программируемой клеточной гибели — аутофагию[20]
.

См. также

Примечания

  1. 1 2 Программируемая клеточная смерть у растений // Успехи биологической химии. — 2012. — Т. 52. — С. 97—126.
  2. 1 2 3 Камзолкина О. В., Дунаевский Я. Е. Биология грибной клетки. — М.: Товарищество научных изданий КМК, 2015. — С. 217—223. — 239 с. — ISBN 978-5-9906564-1-3.
  3. ]
  4. ]
  5. ]
  6. ]
  7. ]
  8. ]
  9. Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson. Campbell Biology. — Pearson, 2014. — С. 228. — ISBN 978-0-321-77565-8.
  10. Doe C. Q., Goodman C. S. Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. (англ.) // Developmental Biology. — 1985. — September (vol. 111, no. 1). — P. 193—205. — PMID 4029506. [исправить]
  11. ]
  12. Vernooy S. Y., Copeland J., Ghaboosi N., Griffin E. E., Yoo S. J., Hay B. A. Cell death regulation in Drosophila: conservation of mechanism and unique insights. (англ.) // The Journal Of Cell Biology. — 2000. — 24 July (vol. 150, no. 2). — P. 69—76. — PMID 10908589. [исправить]
  13. ]
  14. ]
  15. Ярилин А. А. Апоптоз и его роль в целостном организме // Глаукома. — 2003. — Вып. 2. — С. 46—54.
  16. ]
  17. ]
  18. ]
  19. The Nobel Prize in Physiology or Medicine 2002. The Nobel Foundation (2002). Дата обращения: 21 июня 2009. Архивировано 26 декабря 2018 года.
  20. The Nobel Prize in Physiology or Medicine 2016. The Nobel Foundation (3 октября 2016). Дата обращения: 3 октября 2016. Архивировано 26 декабря 2018 года.